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Preface 

This book provides a siunmary of the research conducted at UCLA, Stanford 
University, and UCSD over the last five years in the area of nonlinear dynam- 
ics and chaos as applied to digital communications. At first blush, the term 
"chaotic communications " seems like an oxymoron; how could something as 
precise and deterministic as digital communications be chaotic? 

But as these various chapters will demonstrate, the application of chaos 
and nonlinear dynamics to communications provides many promising new 
directions in areas of coding, nonlinear optical communications, and ultra- 
wideband communications. These chapters summarize many of the promising 
new approaches that have been developed, and point the way to new research 
directions in this field. 

Digital communications techniques have been continuously developed and 
refined for the past fifty years to the point where today they form the heart 
of a multi-hundred billion dollar per year industry employing hundreds of 
thousands of people on a worldwide basis. There is a continuing need for 
transmission and reception of digital signals at higher and higher data rates. 
There are a variety of physical limits that place an upper limit on these data 
rates, and so the question naturally arises: are there alternative communica- 
tion techniques that can overcome some of these limitations? 

For example, most digital communications today are carried out using 
electronic devices that are essentially "linear," and linear system theory has 
been used to continually refine their performance. In many cases, inherently 
nonlinear devices are linearized in order to achieve a certain level of linear 
system performance. However, as device technology reaches its fundamental 
limits, the natural question arises can the intrinsic nonlinearity of electronic 
devices be exploited in some fundamental way to improve communications 
system performance? 

One example of the type of improvement that can potentially be achieved 
with the judicious application of the intrinsic nonlinearity of an electronic de- 
vice is the well-known use of solitons in fiber-optic transmission systems. The 
inherent nonlinearity of an optical fiber ensures that a digital pulse - a soliton 
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- retains a constant shape over a large distance, and that the pulses do not 
diffuse or disperse during transmission. In this case, the nonlinearity of the 
fiber compensates for its dispersion, and vice versa. Solitons have many inter- 
esting and useful properties, including essentially distortionless propagation 
over enormous distances and "damage-free" soliton-soUton collision. 

The potential advantages of operation of nonlinear devices for generation 
of digital communications signals include improved efHciency, lower dc power, 
lower probability of intercept, and lower probability of detection. These po- 
tential advantages have to be balanced against the need for efficient spectrum 
management, and the cost of this new technology. 

In order to understand the full impact that nonlinear techniques may have 
on digital communications, we will begin with a brief overview of modern dig- 
ital communications techniques. Figure 0.1 shows a block diagram of a typical 
digital communications system. Each block in the transmission chain performs 
a unique function. The source encoding block takes the data provided by the 
information source, and codes it in an optimum way for further transmission 
— either by removing redundant bits, or compressing it in some other fashion. 
The encrjrption block re-codes the data in order to enhance transmission secu- 
rity. The chaimel encoding performs a variety of transformations on the input 
data to minimize the overall degradation due to channel impairments. Mod- 
ulation impresses the encoded data onto the radio frequency carrier, which 
is then combined with other signals in a Multiple Access scheme, and finally 
delivered to the transmit antenna. Each block in the receiver chain performs 
the inverse operation to that of the transmit chain. 
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Fig. 0.1. Block diagram of modern digital communications system [4]. 

The advantages of digital communications compared to traditional analog 
techniques can immediately be seen from this brief overview. First, the trans- 
mitted information is coded in such a way to make its reception insensitive 
to chaimel impairments, private, and free of urmecessary redundant informa- 
tion that would waste valuable spectrum. The data is then modulated onto a 
carrier in a manner that can predictably minimize the bandwidth and power 
requirements for a given desired data and error rate. The level of control over 
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the security, bandwidth, and error rate that digital communications techniques 
allow is significantly greater than that of traditional analog techniques. 

Nonlinear techniques can be applied in a straightforward manner to the 
Encryption/Decryption blocks of the system. In this manner, data can be 
"embedded" in a chaotic sequence, which is only known to the desired receiver 
- significantly enhancing security. Nonlinear techniques can also be potentially 
applied to Channel Encoding/Decoding functions, where there may be some 
benefit to chaotic channel coding techniques for greater immunity to channel 
fading problems. Chaotic modulation and spreading techniques may allow 
for improved multiple channel access approaches and improved immunity to 
potential jamming and fading conditions. Chaotic modulation of digital data 
may be less sensitive to electronic nonlinearities in the transmit and receive 
portions of the device. 

The spectra of chaotic signals make them very attractive for use as carri- 
ers in spread spectrum communications. Since chaotic signals are generated 
by deterministic dynamical systems, two coupled chaotic systems can be syn- 
chronized to produce nearly identical chaotic oscillations. This insight provides 
the key to the recovery of information that is modulated onto a chaotic car- 
rier. In addition, a chaos-based communications system could also improve 
privacy, security, and probabiUty of intercept, since chaotic sequences, unlike 
pseudorandom sequences, can be made completely nonperiodic. 

Optically-based chaotic communications, which are based on the transmis- 
sion of messages encoded on a chaotic waveform, have attracted very extensive 
research activity. Most of the systems are based on synchronization of chaos 
between a transmitter and a receiver, which are linked by a transmission chan- 
nel. For such systems, synchronization between the transmitter and receiver 
is mandatory, since the bit-error rate (BER) of the decoded message at the 
receiver depends on the accuracy and robustness of synchronization. 

Many systems based on either semiconductor lasers or fiber lasers have 
been proposed and studied for chaotic optical communications based on non- - 
linear dynamics and chaos. Chaotic optical systems that can reach the rates 
typically employed by traditional optical communications systems, such as 
the OC-48 standard bit rate of 2.5 Gb/s and the OC-192 standard bit rate of 
10 GB/s, are particularly attractive. In this book ,we will present three of the 
leading semiconductor laser systems that are most actively investigated and 
are most promising for high-bit-rate chaotic optical communications: optical 
injection system, optical feedback, and the optoelectronic feedback. 

This research was supported by the Army Research Office (ARO) and the 
Multi-University Research Initiative Program. Dr. John Lavery was the ARO 
Program Manager guiding the research on the program, and we would Uke to 
acknowledge his tireless support and creative insights throughout the project. 

We would also like to acknowledge the technical leadership of Professor 
Henry Abarbanel of UCSD. As Director of the Institute for. Nonlinear Sci- 
ences (INLS) at UCSD, Professor Abarbanel has pioneered the apphcations 
of nonlinear dynamics to a variety of fields - from communications to neu- 
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robiology. Many of the technical ideas that are developed here were inspired 
by his creativity and significant contributions. We would also like to acknowl- 
edge the support of Drs. Lou Pecora and Tom Carroll of the Naval Research 
Laboratories for their many useful discussion and their continuous support. 

Finally, we would like to acknowledge the support of the superb admin- 
istrative staff at INLS and UCSD - Ms. Mary Jones, Ms. Terry Peters, Ms. 
Beryl Nasworthy, and Mr. James Thoms. 
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An Overview of Digital Communications 
Techniques using Chaos and NonUnear 
Dynamics 

Lawrence La^son^ Lev Tsimring^, Henry AbarbaneP'^, Jia-Ming Liu^, Kung 
Yao'*, Alexander Volkovskii^, Nikolai Rulkov^, and Mikhail Suschik^ 

^ Dept. of Electrical and Computer Engineering, University of California, San 
Diego, La Jolla, CA 92093-0354 

^ Institute for Nonlinear Science, University of California, San Diego, La Jolla, CA 
92093-0402 

' Department of Physics and Marine Physical Laboratory (Scripps Institution of 
Oceanography) University of California, San Diego, La Jolla,CA 92093-0402 

* Dept. of Electrical and Computer Engineering, University of California, Los 
Angeles, Los Angeles, CA, 90024 

Summary. This chapter will provide a brief overview of some of the digital commu- 
nications techniques that have been proposed recently employing nonhnear dynam- 
ics, along with a comparison to traditional approaches. Both wireless modulation 
techniques as well as optical communications approaches will be presented. 

1.1 Introduction 

Digital communications techniques have been continuously developed and re- 
fined for the past fifty years to the point where today they form the heart 
of a multi-hundred billion dollar per year industry employing hundreds of 
thousands of people on a worldwide basis. There is a continuing need for 
transmission and reception of digital signals at higher and higher data rates. 
There are a variety of physical limits that place an upper limit on these data 
rates, and so the question naturally arises: are there alternative communica- 
tion techniques that can circumvent these natural limits? 

For example, most digital communications today is carried out using elec- 
tronic devices that are essentially "linear," and linear system theory has been 
used to continually refine their performance. In many case, inherently nonlin- 
ear devices are linearized m order to achieve a certain level of linear system 
performance. However, as device technology reaches its fundamental limits, 
the natural question arises can the intrinsic nonlinearity of electronic devices 

^ Portions of this chapter were taken from pubUcations [1, 2, 3]. 
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be exploited in some fundamental way to improve communications system 
performance? 

One example of the type of improvement that can potentially be achieved 
with the judicious application of the intrinsic nonlinearity of an electronic 
device is the well-known use of solitons in fiber-optic transmission systems. 
The inherent nonlinearity of an optical fiber is ensures that a digital pulse 
— a soliton — retains a constant shape over a large distance, and that the 
pulses do not diffuse or disperse during transmission. In this case, the non- 
linearity of the fiber compensates for its dispersion, and vice versa. Solitons 
have many interesting and useful properties, including essentially distortion- 
less propagation over enormous distances and "damage-free" soliton-soliton 
collision. 

The potential advantages of operation of nonhnear devices for generation 
of digital commtmications signals include improved efSciency, lower do power, 
lower probability of intercept, and lower probability of detection. These po- 
tential advantages have to be balanced against the need for efficient spectrum 
management, and the cost of this new technology. 

In order to understand the full impact that nonlinear techniques may have 
on digital communications, we will begin with a brief overview of modern dig- 
ital communications techniques. Figure 1.1 shows a block diagram of a typical 
digital communications system. Each block in the transmission chain performs 
a unique function. The source encoding block takes the data provided by the 
information source, and codes it in an optimum way for further transmission 
— either by removing redundant bits, or compressing it in some other fashion. 
The encryption block re-codes the data in order to enhance transmission secu- 
rity. The channel encoding performs a variety of transformations on the input 
data to minimize the overall degradation due to channel impairments. Mod- 
ulation impresses the encoded data onto the radio frequency carrier, which 
is then combined with other signals in a Multiple Access scheme, and finally 
delivered to the transmit antenna. Each block in the receiver chain performs 
the inverse operation to that of the transmit chain. 
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Fig. 1.1. Block diagram of modern digital communications system. [4]. 
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The advantages of digital communications compared to traditional analog 
techniques can immediately be seen from this brief overview. First, the trans- 
mitted information is coded in such a way to make its reception insensitive 
to channel impairments, private, and free of uimecessary redundant informa- 
tion that would waste valuable spectrum. The data is then modulated onto a 
carrier in a manner that can predictably minimize the bandwidth and power 
requirements for a given desired data and error rate. The level of control over 
the security, bandwidth, and error rate that digital communications techniques 
allow is significantly greater than that of traditional analog techniques. 

Nonlinear techniques can be applied in a straightforward manner to the 
Encryption/Decryption blocks of the system. In this manner, data can be 
"embedded" in a chaotic sequence, which is only known to the desired receiver 
- significantly enhancing security. Nonlinear techniques can also be potentially 
applied to Chaimel Encoding/Decoding functions, where there may be some 
benefit to chaotic channel coding techniques for greater immunity to channel 
fading problems. Chaotic modulation and spreading techniques may allow 
for improved multiple channel access approaches and improved immunity to 
potential jamming and fading conditions. Chaotic modulation of digital data 
may be less sensitive to electronic nonlinearities in the transmit and receive 
portions of the device. 

This Chapter will provide a brief overview of some of the digital commu- 
nications techniques that have been proposed recently employing nonlinear 
dynamics, along with a comparison to traditional approaches. 

1.2 Wireless Communications Based on Nonlinezir 
Dynamics and Chaos 

Wireless digital communications devices typically have a variety of require- 
ments, such as data transmission rate, bite-error rate (BER), bandwidth, 
complexity, and cost. However, in hostile environments (e.g., multipath prop- 
agation; interference from other such devices, potential eavesdroppers, etc.), 
additional desirable features may include security, low probability of intercept, 
spread-spectrum and efficient battery usage. 

These various features can be traded off against each other in a commu- 
nications system using spread spectrum techniques. Spread-spectrum com- 
munication systems modulate a relatively narrow-band message signal onto 
a wide-band carrier. Common spread spectrum technologies use correlation 
techniques to match the received signal with a certain known pattern. As a 
result, the desired signal is accumulated coherently, and the channel noise 
and interference is averaged out. This desirable property of spread-spectrum 
systems — to suppress interference through utilization of a wider bandwidth 
■— is called the processing gain of the system. 

One new approach to these various challenges makes use of chaotic dynam- 
ical systems. Chaotic signals exhibit a wide spectrum and have been studied 
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in connection with spread-spectrum applications[5]. Due to their irregular 
nature, they can be used to efficiently encode the mformation in a number 
of ways. Because chaotic signals are generated by deterministic dynamical 
systems, two coupled chaotic systems can be synchronized to produce identi- 
cal chaotic oscillations. This provides the key recovery of information that is 
modulated onto a chaotic carrier [6]. 

The broad continuous spectra of chaotic signals make them very attractive 
for use as carriers in spread spectrum communications [7, 5, 8, 9, 10, 11, 12, 
13]. Since chaotic.signals are generated by deterministic dynamical systems, 
two coupled chaotic systems can be synchronized to produce identical chaotic 
oscillations. This insight provides the key to the recovery of information that 
is modulated onto a chaotic carrier. A number of chaos-based communication 
schemes have been suggested, but many of these systems are very sensitive 
to distortion, filtering, and noise. However, a chaos-based communications 
system could also improve privacy, security, and probability of intercept, since 
chaotic sequences, unlike pseudorandom sequences, can be made completely 

nonperiodic. 

1,2.1 Wireless Communications Based on Chaotic Carriers 

Several differing chaos-based modulation schemes will now be described. The 
operation of a Differential Chaos Shift Keying (DCSK) [9, 14] modulator 
and demodulator is illustrated in Figure 1.2. For each transmitted bit, the 
transmitter outputs a chaotic sequence Xi of length M followed by the same 
sequence multiplied by the information signal 6j = ±1, where I is the bit 
counter. As a result, the transmitted signal Sj is given by 

** ~ \biXi-M, M<i<2M 

The receiver takes the received signal — r, - and multiplies it by the 
received signal, delayed by M (U-M)- The result is then averaged over the 
spreading sequence length M. Thus the output of the correlator can be written 

^ M 

1=1 

If we make the standard assumptions that the received signal r-j is given 
by ri = Si + ^i, where Ci is a stationary random process with < ^i >- 0, that 
^i and ^j are statistically independent for anyi^j, and that we can maintain 
perfect bit synchronization. Then the correlator output can be written as 

M 

S = ^(Si + ^i)iSi+M + ^I+M) 



1 Digital Communications using Chaos 5 

- Yl (^'^i + ^ii^i+M + Hi) + 66+M) (1-3) 
i=l 

M M 

M 

i=l 1=1 

where the first term is the desired signal and the second is a zero mean random 
quantity representing the noise and interference terms. 

One shortcoming of this method is the need to transmit the same chaotic 
sequence twice, which makes this system prone to interception and wasteful 
of power. Also, the transmitter requires a delay element and a switch, or a 
generator capable of reproducing the same chaotic sequence. 
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Fig. 1.2. DCSK operation: a - transmitter, h - receiver. 

An alternative technique is Correlation Delay Shift Keying (CDSK) [2]. 
In the CDSK modulator (Figure 1.3), the transmitted signal is the sum of 
a chaotic sequence and the same delayed chaotic sequence multiplied by the 
information signal 6; = ±1. As a result, CDSK overcomes the problems of 
DCSK: the switch in the transmitter is now replaced by an adder, and the 
transmitted signal is never repeated. The CDSK receiver (Figure 1.3(b)) is 
the same as for DCSK, except the delay now does not have to be equal to the 
spreading sequence length. The correlator output 5 is given by the sum 

M 

S - 22i{Xi + hXi-L + ^i){Xi-L + bl-iXi-2L + ^i-i) 
t=l 
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M 

i=l 

M 
(1.4) 

where 

rii = XiXi-L + bl-iXiXi-2L + hlhi-\Xi-LXi-2L 

+ Xi^i-L + blXi-L^i-L + Xi-L^i + bl-iXi-2L^i 

The first term in (1.4) is the desired signal and the second comes not only from 
noise part of the correlator input, but also from correlating chaotic segments 
over finite time. This additional interference leads to degraded performance 
of CDSK, compared to DCSK. 
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Fig. 1.3. CDSK operation: a - transmitter, h - receiver. 

An alternative to including the reference signal m the transmitted signal 
involves recreating the reference signal in the receiver. This approach is taken 
in the design of Symmetric Chaos Shift Keying (SCSK) [2] whose operation 
is illustrated in Figure 1.4. The central element of a SCSK transmitter is the 
chaotic map 

Xi+i = F(xi), (1-5) 

where x^ is the internal state vector. The first component of this vector 
multiplied by the mformation signal bi = ±1 is the transmitted signal: Sj = 
hiXi. In the receiver this signal is driving a matched chaotic system: 

yi+i = G(|Si|,yi). (1.6) 

F(») and G(») are chosen such that the drive-response system that they 
form has a stable identically synchronous regime with respect to the first 
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components of vectors Xi and yj: x] = y\. The simplest example of such 
drive-response system is a two one-dimensional map, i.e. 

ajj+i = F{xi), 

Vi+i = F{si), 

where JF(«) is even, F{x) = F{—x). In the noise-free case, the output of 
the chaotic system in the receiver is the same as the output of the chaotic 
system in the transmitter, and the same as the signal in the channel, except 
for information dependent polarity modulation. The sign of hi can therefore 
be determined by taking the product of the received signal and the output 
of the chaotic system in the receiver. The product can then be averaged over 
the length of the spreading sequence in order to reduce the effects of channel 
noise. 

In general, the correlator output for SCSK can be written as 

M 

s = Y,y\Q>ix\ + ^i), (1.7) 

where y\ is the output of the chaotic system in the receiver. In the case 
when the chaotic map is one-dimensional 

M 

S = ^F(6,a;i_i-^ei-i)(bja;i+^i). (1.8) 

We can introduce |i = ^i/hi and rewrite this in the form 

M 

i=l 
M M 

1=1 i=l 
M 

+ bij^ (n^i-i+ii-i) - Fixi-i)) F(xi-i). 
1=1 

The first sum in this expression is the desired signal, and the second is the 
interference. 

The SCSK approach has advantages over both DCSK and CDSK. The 
transmitter design is simpler and the SCSK transmitted sequence is non- 
repeating, leading to a lower probability of intercept. Additionally, demodula- 
tion of the SCSK signal requires a matched nonlinear system in the receiver, 
thus offering better protection against an imauthorized reception. These ad- 
vantages come at the expense of some performance loss and of the more re- 
stricted choice of nonlinear systems used for chaos generation. 
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Fig. 1.4. SCSK operation: o - transmitter, h - receiver. 

Extensive analysis has been performed on the performance of these sys- 
tems in [2], along with a comparison to more traditional periodic carrier com- 
munications approaches. What follows are some representative performance 
comparisons of these new chaotic modulation approaches compared to existing 
techniques. 

The output of the correlator for DCSK is given by (1.3). It can be written 
in the form 

S = hiA + hiC + r],     A>Q. (1.10) 

M 
Here A =< a;? > M, C = Ei=i ^i - ^ and 

M M M 

?7 = ^ Xi^i+M + bi^ Xiii + "Y^ ii^i+M- 
t=l i=l t=l 

For DCSK A = £^6/2. We shall require that Xi is stationary, and that the cor- 
relation between Xi and Xi^k decay quickly as \k\ increases (which is standard 
for chaotic systems). We further assume that M is much larger than the char- 
acteristic correlation decay times. Under these assumptions, as M increases, 
the distributions of C and 77 approach Gaussian distributions[15]. 

Thus the bit error rate for the DCSK is given by 

BER -erfc 
Eb 

4iVo 
1 + A^ + J^MV I       (1.11) 

5MNo     2Eb    J ^      ' 

Figure 1.5a presents the results of numerical simulations with different 
values of M. Channel noise ^i was taken to be Gaussian. The bit error rate for 

conventional binary phase shift keying (BPSK) BERBPSK = erfc {^sjEb/Noj /2 
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Fig. 1.5. Performance of correlation-based detection methods: DCSK (a), CDSK 
(6) and SCSK (c). A compairison to BPSK is included for comparison. 
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is also shown for comparison. In Figure 1.6 we observe excellent agreement 
between the analytical prediction and the results of numerical simulations for 
M = 100. 

Prom Figure 1.5a we also see that at large M the performance degrades 
with increasing M, which is consistent with (1.11). This trend occurs due 
to increasing contribution of noise-noise cross terms ^i^i-M in (1-3) and is 
typical for correlation decoding of TR signals. As we increase M keeping 
Eb/No constant at a fixed signal amplitude, we increase iVo proportionally 
to M. Thus, while the useful signal in (1.3) increases linearly with M, and 

so does the standard deviation of J^^^ Xi{hi(,i M + (.i), ~ ^/MNQ ~ M, the 
standard deviation of Y^^i ^i^i-M, ~ y/MN^ ~ M^^^, grows faster. 

Performance Comparison 
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Fig. 1.6. Performance of DCSK, CDSK, and SCSK with M = 100. Numerical data 
and anal3rtical estimates are shown with symbols and lines respectively. 

The bit error rate for the CDSK system is given by 

BER = (1.12) 
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The results of numerical simulations with L = 200 are shown in Fig- 
ure 1.56. The comparison between the anal3^ical and numerical results is 
given in Figure 1.6. Considering that Xi and Xj can be considered statistically- 
independent only approximately at large M, the analytical and the simulation 
curves at M = 100 match reasonably well. 

In Figure 1.6 we also see the CDSK performs 2-3dB worse than the DCSK. 
This is due to two factors. First, due to the nature of the transmitted signal, 
there are four signal-noise cross terms in (1.5), compared to only two such 
terms in (1.3) for DCSK. Second, in addition to interference terms due to noise 
(noise-signal and noise-noise terms) there are three interference terms due 
to non-complete orthogonality of chaotic segments on two consecutive time 
intervals. Since these terms are present even when noise amplitude is zero, bit 
error rate saturates at large £^5/^0 at the value BERsat = erfc(-/5M/38)/2. 
This saturation is visible in Figure 1.56 which shows the bit error rate curves 
computed numerically for different values of M. Here we also see that, as 
in the case of DCSK, increasing M at constant Eb/No leads to performance 
degradation. 

In general the correlator output (1.9) for this system can be written in the 

form (1.10) with A = Eb+MAEb, where AEb = ^ (F{xi-i + |i_i) - F(a;i_i) F{xi-i)'^ 

r) and C can be defined as in the previous two cases. When M is large, C is 
zero mean Gaussian variable with the variance in the case of the tent map 
al = 4E^/(5M). T] for SCSK is defined as 

M 

i=l 
M 

+ J2 {Fi^i-i + ii-i) - Fixi-i))F{xi-i) - AEb) , 

and is also in the limit of large M a iero mean Gaussian variable. Because 
of the nonlinearity of F, it is difficult to find analytically the explicit formula 
for the bit error rate, however we may expect to see the same general features 
in its performance as in DCSK and CDSK. Figure 1.5c shows the numerical 
performance curves for SCSK. This figure confirms our expectation that the 
performance of SCSK should follow the same trends as that of DCSK or 
CDSK. In particular we again observe the degraldation of performance at 
large values of M. 

1.2.2 Wireless Chaotic Pulse Position Modulation 

An impulsive based transmission system, where the information is modulated 
on the time intervals between the pulses, has a number of potential advantages, 
over those described in the previous section. The negative effects of filtering 
and channel distortions, which typically severely impair the ability of chaotic 
systems to synchronize, are substantially reduced by using impulse signals. 
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One approach to these impulsive-based communications systems is to use 
chaotically timed pulse sequences rather than continuous chaotic waveforms[16]. 
Each pulse has an identical shape to all the others, but the time delay between 
them varies chaotically. Since the information about the state of the chaotic 
system is contained entirely in the timing between pulses, the distortions that 
affect the pulse shape will not significantly influence the ability of the chaotic 
pulse generators to synchronize and be utilized in communications. 

This proposed system is similar to other ultra-wide bandwidth impulse 
radios [17], which are very promising communication platforms, especially in 
severe multi-path environments or where they are required to co-exist with 
a large number of other radio systems. Chaotically varying the spacing be- 
tween the narrow pulses enhances the spread spectrum characteristics of the 
system by removing any periodicity from the transmitted signal. Because of 
the absence of characteristic frequencies, chaotically positioned pulses are ex- 
tremely hard to observe and detect illegitimately. Thus, one expects trans- 
mission based on chaotic pulse sequences to have a very low probability of 
intercept. Additional security can be accomplished by using one of the coding 
schemes suggested for covert communications with chaotic systems [18]. 

The particular chaotic encoding method. Chaotic Pulse Position Modula- 
tion (CPPM) [3], is related to the dynamical feedback modulation method[16]. 
The communication scheme is built around a Chaotic Pulse Regenerator, 
CPRG (see Fig.1.7). Given a pulse train with interpulse intervals T„, the 
CPRG produces a new pulse sequence with intervals r„ -t- ATn where AT de- 
pends on the input sequence: ATn = F(T„,...,r„_)t); F(») is such that with 
no input and with the feedback loop closed, the transmitter generates a pulse 
train with chaotic interpulse intervals. 

The binary information is applied to the pulse train leaving the CPRG by 
adding an extra block in the feedback loop that leaves the signal unchanged, 
if "0" is being transmitted, or delays the pulse by a fixed time if "1" is being 
transmitted. This modulated pulse sequence is the transmitted signal. Since 
an unauthorized receiver has no information on the spacing between the pulses 
leaving the CPRG, it cannot determine whether a particular received pulse 
was delayed, and thus whether "0" or "1" was transmitted. This provides a 
certain degree of privacy. At the receiver side, the signal is applied to the 
input of an identical CPRG. 

The outputs from the CPRGs in the transmitter and the receiver are 
identical. Thus the signal at the output of the receiver CPRG is identical to 
the signal in the channel, except some pulses in the transmitted signal are 
delayed. By evaluating the relative pulse timings in the received signal and 
in the signal at the output of the CPRG, the receiver can decode the digital 
message. When the CPRGs are not matched with sufficient precision, a large 
decoding error results. Thus the parameters of the CPRGs act like a privacy 
key. 

When synchronized, the receiver "knows" the time interval or a window 
where it can expect a pulse corresponding to a "1" or a "0". This allows the 
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Fig. 1.7. Illustration of the basic CPPM approach. 

input to be blocked at all times except when a pulse is expected. The time 
intervals when the input to a particular receiver is blocked can be utilized 
by other users. To decode a bit of information we must determine whether 
a pulse from the transmitter falls into the window corresponding to "0" or 
that corresponding to "1", which can be done by integrating the input signal 
within the windows around the expected locations of pulses corresponding to 
"0" and to "1". If all pulses have the same polarity and synchronization is 
perfect, the CPPM performance is equivalent to that of OOK - 3dB worse 
than BPSK. 

This is shown in the "PPM" curve in Fig.1.8. This performance is achieved 
with the window size equal to the pulse duration. In the case of imperfect syn- 
chronization the window cannot be so narrow, and with the larger window size 
and the same detection method we shall have an additional loss of performance 
equal to lOlogT/r where T is the window size and r is the pulse duration. 

There is another degradation feictor common to chaos-based communica- 
tion schemes. Most traditional schemes are based on periodic signals and 
systems where the carrier is generated by a stable system. All such sys- 
tems are characterized by zero Kolmogorov-Sinai entropy (KSE): without 
any input the average speed of non-redundant information generation is zero. 
Chaotic systems have positive KSE and continuously generate non-redundant 
information. Even in an ideal enviromnent, in order to perfectly synchro- 
nize two chaotic systems, one must transmit the amount of information per 
unit time that is equal to or larger than the KSE[19]. Consider a tent map 
Xn+i — OL |0.5 - |0.5 - a;„|| with a — 1.3. The KSE for chaotic iterations of this 
map is EKS = log20t = 0.38. Thus, to synchronize two tent maps and transmit 
one bit of information per iteration one would have to actually send on aver- 
age 1.38 bits per iteration. This correction shifts the ideal performance curve 
for the CPPM scheme by 1.39dB to the right, shown by the "ideal CPPM" 
curve in Fig.1.8. 
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Fig. 1.8. The performance of the PPM schemes: PPM (the synchronous binary pulse 
position modulation scheme) is offset by 3dB from BPSK; ideal CPPM includes the 
additional shift derived from KSE. 

The receiver that provides the best results is shown in Fig.1.9. Based on 
the state of the synchronized CPRG, the input is blocked at.all times except 
the time windows around the expected locations of the pulses corresponding 
to "1" and "0". The signals within these windows are applied to peak detectors 
(PD). Based on which window contained the peak of the maximum height, 
we decide whether "1" or "0" was transmitted and the signal within the 
corresponding time window is passed to the receiver SPRG. 

The channel is modeled by adding WON to the output of the transmitter 
and then LP-filtering the signal with a FIR filter, which models the transmitter 
and receiver antennas. We measure SNR and find Eb/No using the following 
formula [4]: Eb/No = S/N (W/R), where S/N is the SNR, W is the channel 
bandwidth and R is the bit rate. 

The performance curve corresponduig to these parameters is shown in Fig. 
1.8. One can see that CPPM performs 4dB worse than the ideal CPPM system 
in simulation. Most of this difference is attributed to the imperfect synchro- 
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Fig. 1.9. Diagram of an optimized CPPM receiver. 

nization in the receiver. Although CPPM seems to perform worse than even 
non-coherent FSK, we should emphasize that (i) this spread spectrum sys- 
tem provides low intercept probability and covertness through a very simple 
design; (ii) to our knowledge, this system performs exceptionally well com- 
pared to other chaos-based covert communication schemes; {ii%) there exist a 
multiplexing strategy that can be used with CPPM [20] and {iv) the system 
can be improved at lower bit rates, with narrower bandwidth. All this makes 
CPPM a prime base for development of chaos-based covert spread spectrum 
systems. 

1.3 Optical Communications Beised on Nonlinear 
Dynamics 

Optically-based chaotic communications, which are based on the transmission 
of messages encoded on a chaotic waveform, have attracted very extensive re- 
search activity [21]. Most of the systems are based on synchronization of chaos 
between a transmitter and a receiver, which are linked by a transmission chan- 
nel. For such systems, synchronization between the transmitter and receiver 
is mandatory, since the bit-error rate (BER) of the decoded message at the 
receiver depends on the accuracy and robustness of synchronization. 

Many systems based on either semiconductor lasers [22, 23, 24, 25, 26, 27, 
28, 29, 30, 31, 32, 33, 34] or fiber lasers [35, 36, 37] have been proposed and 
studied for chaotic optical communications. We are especially interested in 
chaotic optical systems that can^reach the rates typically employed by tradi- 
tional optical communications systems, such as the OC-48 standard bit rate 
of 2.5 Gb/s and the OC-192 standard bit rate of 10 GB/s. We will present 
three of the leading semiconductor laser systems that are most actively in- 
vestigated and are most promising for high-bit-rate chaotic optical communi- 
cations. They are the optical injection system[24, 25], optical feedback, and 
the optoelectronic feedback system [29, 30], which are schematically shown in 
Figures ( l.lOa-c), respectively. 
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Fig. 1.10. Schematic diagrams for three synchronized chaotic optical communica- 
tions systems using semiconductor lasers. Also shown are the message encoding and 
decoding schemes for the three methods: (a) Optical injection, (b) optical feedback, 
and (c) optoelectronic feedback 

Synchronization between the transmitter laser diode and the receiver laser 
diode can be either unidirectional or bidirectional, but unidirectionally cou- 
pled systems are typically used for high-bit-rate communications. The receiver 
can be operated in open-loop or closed-loop mode, but an open-loop receiver 
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can be more stably synchronized to the transmitter than a closed-loop re- 
ceiver [31]. Therefore, we consider only unidirectional systems with open-loop 
receivers as shown in Figure  1.10. 

Information can be impressed onto these optoelectronic systems in several 
different ways, as shown in Figure 1.10. Several encryption methods have 
been considered and demonstrated for chaotic commimication systems. The 
most important ones include chaos shift keying (CSK) [38], chaos masking 
(CMS) [39], chaos modulation [6], [40], and chaotic pulse position modulation 
(CPPM) [2], [3]. In the case of chaos modulation, both additive chaos mod- 
ulation (ACM) [6] and multiplicative chaos modulation (MCM) have been 
considered [40]. 

The CSK encryption method is implemented by encoding the message 
through direct current modulation of the transmitter. Decoding of the mes- 
sage is done by subtracting the output of the receiver from the signal that is 
transmitted to the receiver. True synchronization cannot be expected in the 
process of message encoding with CSK because the transmitter is current- 
modulated with the message but the receiver is not. The chaotic state of the 
transmitter is influenced by the message in the CSK encryption. 

In the CMS encryption method, a message is encoded on the chaotic out- 
put of the transmitter by simply adding the message to the chaotic waveform 
being transmitted to the receiver. The message is decoded by subtracting the 
output of the receiver from the signal that is transmitted to the receiver. 
Because information of the message is injected into the receiver but no in- 
formation of the message is sent to the transmitter, the syrometry between 
the receiver and the transmitter cannot be maintained. Consequently, true 
synchronization cannot be expected when a message is encoded with CMS. 
However, the chaotic state of the transmitter is not influenced by the message 
in the CMS encryption. 

In the ACM encryption method, the message is encoded by adding it to 
the chaotic output of the transmitter, but, different from CMS, the informa- 
tion of the message is sent equally to both the transmitter and the receiver. 
Decoding is performed again by subtracting the output of the receiver from 
the signal that is transmitted to the receiver. True synchronization is possible 
when a message is encoded with ACM because the symmetry between the 
transmitter and the receiver is not broken by the message-encoding process of 
this encryption method. The chaotic state of the transmitter, as well as the 
complexity of chaos, varies with the message in the ACM encryption. 

For the optical injection system shown in Figure 1.10(a), the nonlinear 
dynamics of the transmitter is generated by optical injection from another 
laser. When synchronization is achieved, the optical frequency, phase, and 
amplitude of the two lasers are all locked together synchronously [34]. 

According to the configuration in Figure 1.10(a), the transmitter can be 
modeled by the following coupled equations in terms of the complex laser field 
amplitude and the carrier density [22, 23] 
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dA 
dt ■^ = -(^+rja)A^ + i{u;o-uJc)A^ (1.13) 

and 

dN^ _J[1 + mcsKJt)] _ ^^^T _ 2£ort^ |^T|2 (114) 
dt ed fiu){ 

and the receiver can be described by 

^ = -(f)A^ + ii.o-u.c)A^ (1.15) 
+£(l_i6^)5A« + Fj + r?5(t) 

and 

f[^ = Z_^,iV«_^£2!]i!M^|2 (1.16) 
dt       ed fkvo 

where A is the complex intracavity field amplitude, 7^ is the cavity decay 
rate, LJC the longitudinal mode frequency of the cavity, F the confinement 
factor, 6^ the linewidth enhancement, g the gain coefficient including second- 
order eflFects, F,^ the spontaneous emission noise source, N the carrier density, 
J the injection current density, d the active layer thickness, 7s the spontaneous 
carrier decay rate, n the refractive index, and F the carrier noise. 

In this model,Aie-'^* is the optical injection field with a detuning fre- 
quency Q, 77 is the injection rate of an optical field into the laser, and a 
defines the coupling strength between the transmitter and the receiver. The 
subscript of the encoding message in 1.13 and 1.14 indicates the type of en- 
coding scheme used. When a particular scheme is used, M{t) with a subscript 
of other schemes should be set to zero. As we can see from the mathemat- 
ical model, when CMS is applied, the encoding message is injected into the 
receiver but not into the transmitter. When CSK is applied, only the trans- 
mitter, but not the receiver, is current modulated with the encoding message. 
By comparison of the rate equations above for different encoding schemes, 
we can see that the transmitter and the receiver are never mathematically 
identical when a message is encoded with the CMS or the CSK scheme. They 
can be identical only when a message is encoded with the ACM scheme and 
when their parameters are properly matched. 

A general characteristic of chaotic communications based on synchroniza- 
tion, is that the recovered message is contaminated by the channel noise as 
well as the synchronization error. Therefore, the performance of this system 
is determined by an experimental comparison of the results in the time do- 
main. Figure 1.11 In order to reveal the effect of the channel noise on the 
message recovery, the data shown in this figure are obtained when the laser 
noise is not considered. The value of SNR is set at 36 dB. It is observed that 
message recovery is almost impossible for the CSK scheme because message 
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encoding with CSK causes frequent desynchronization bursts and the success 
of message decoding for this encryption scheme is determined by the resyn- 
chronization time. At a bit rate of 10 Gb/s, resynchronization is difficult to 
achieve within the short time of the bit duration of 0.1ns. The performance 
can be improved at low bit rate when the bit duration gets longer than the 
resynchronization time. 

In the case of CMS, the synchronization error mainly arises from the break- 
ing of the mathematical identity between the transmitter and the receiver by 
the encoded message. Since the encoding message used is small in comparison 
to the transmitter output, the encoded message acts only as a perturbation 
on the synchronization. Therefore, the recovered message shows some resem- 
blance to the pattern of the encoding message. Better message recovery can 
be expected if a low-pass filter is used. 

The performance of ACM is the best among the three encryption methods 
because message encoding by ACM does not break the mathematical identity 
between the transmitter and the receiver. The error bits are contributed by 
synchronization error caused by the channel noise, as well as by the laser noise 
when it is considered. Whether synchronization deviation or desynchroniza- 
tion bursts dominate in the generation of error bits depends on the amount 
of noise present.We can see that the single error bit seen in the ACM decoded 
message in Figure 1.11 is generated by the occurrence of a desynchronization 
burst. 

The system performance measured by the BER as a function of channel 
SNR for the optical injection system is shown in Figure 1.12 for each of the 
three encryption schemes.We observe that CSK and CMS have similar per- 
formance when the laser noise is not considered. The performance of CMS 
is barely affected by the laser noise because the breaking of the mathemati- 
cal identity between the transmitter and the receiver caused by the encoded 
message has a much more significant effect on creating synchronization error 
than the perturbation of the laser noise to the system. The performance of 
CSK is, however, deteriorated by introducing the laser noise because the noise 
further increases the desynchronization probability and the resynchronization 
time. As for the performance of the ACM scheme, a BER lower than 10~® 
can be obtained for an SNR larger than 60 dB imder the condition that the 
laser noise is absent. However, in the presence of the laser noise at a level 
corresponding to a laser linewidth of around 100 kHz, for example, the BER 
saturates at a value higher than 10~^, and the BER saturates at a higher 
value for a larger laser noise. 

For the optical feedback system shown in Figure 1.10(b), the nonlinear dy- 
namics of the transmitter is generated by optical feedback of the laser output. 
According to the configuration in Fig. 1(b), the transmitter can be modeled 
by the following coupled equations 

C = -f ^^ + ^('^0 - Wc)A^ (1.17) 
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Fig. 1.11. Time series of the decoded messages of the three different encryption 
schemes in the optical injection system. 

and 

dN^      J[l + mcsK{t)] 
-IsN^ 

dt ed 

and the receiver can be characterized by 

\A T\2 

and 

dN^ 
dt ed ncjo 

(1.18) 

(1.19) 

(1.20) 
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injection system. Solid Une: obtained when laser noise is absent, dashed line: obtained 
when the laser noise level of Au = IQOkHz for both the TLD and RLDs. Dot-dashed 
Une obtained when Af = IMHz and dotted line obtained when Av — lOMHz. 
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In this case, tau is the feedback delay time and rj is the injection rate. Since 
the feedback strength has to be equal to the coupling strength between the 
transmitter and the receiver for the existence of perfect chaos synchronization, 
the parameter a is used for both quantities. The transmitted signal has the 
form s{t) = aA^^t - r) + m{t) for both the ACM and CMS schemes, and the 
form s(t) = aA^(t - r) for the CSK scheme. The subscript of the encoding 
message in  1.17 and  1.20 indicates the type encoding scheme used. 

When CMS is applied, the encoding message is sent to the receiver but is 
not fed back to the transmitter. When CSK is applied, only the transmitter, 
but not the receiver, is current modulated with the encoding message. By 
comparison of the rate equations above for different encoding schemes, we 
can see that the transmitter and the receiver can be identical in the presence 
of a message only when ACM is applied and when their parameters are well 
matched. 
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The system performance, measured by the BER as a function of channel 
SNR for the optical feedback system is shown in Figure 1.13. Prom Figure 
1.13, we find that message recovery for the CSK scheme is not possible at 
the high bit rate studied here because the resynchronization time after a 
desynchronization burst has to be shorter than the bit duration for a following 
bit to be recoverable. The performance of CMS in this system is similar to that 
of CMS in the optical injection system, and it is barely affected by the laser 
noise for the same reason as that mentioned above for the optical injection 
system. As for the performance of the ACM scheme, a BER lower than 10~3 
cannot be obtained even when the channel SNR is as large as 120 dB. This is 

100 120 

SNR(dB) 
Fig. 1.13. BER versus SNR for the three different encryption schemes in the optical 
feedback system Each curve corresponds to the same curve in Figure  1.12. 

The final synchronization approach employs optoelectronic feedback Ac- 
cording to the configuration in Figure 1.10(c), the transmitter can be modeled 
by the following coupled equations in terms of the photon density 5^ and the 
carrier density iV^ 
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dt 

and 

= -7j5^ + rgS^ + 2x/Sb5^Fj (1.21) 

dN^ = J[^ + mcsKit)] ^^ _^ ^yT (, _ ^)] _ ^^^T _ gsT (1.22) 
dt ed 

and the receiver can be described by 

dS^ 
dt 

and 

= -7,5^ + FgS^ + 2^%S^Fi- (1.23) 

where ^ is the feedback strength, T is the feedback delay time, and 
/(t) is the normalized response function of the feedback loop, including 
the photodetector and the amplifier. The transmitted signal has the form 
s{t) = S'^{t) + m{t) for both the ACM and CMS schemes, and the form 
s{t) = S'^{t) for the CSK scheme. The subscript of the encoding message 
m{t) in 1.22 indicates the encoding scheme used. The transmitter and the 
receiver caii be mathematically identical only when a message is encoded with 
the ACM scheme and when their parameters are well matched. 

The system performance as measured by the BER as a function of channel 
SNR for the optoelectronic feedback system is shown in Figure 1.14. From 
Figure 1.14, we find again that message recovery at a high bit rate is not 
possible for the CSK scheme. The CMS scheme has better performance in 
this system than it does in both the optical injection and the optical feedback 
systems. The performance of CMS is barely affected by the laser noise for the 
same reason as that mentioned above for the other two systems. As for the 
performance of ACM, a BER lower than can be obtained when the SNR is 
larger than 38 dB, which is much better than the performance of ACM in the 
other two systems discussed above. 

The reason for this improved performance is that the channel noise in 
the optoelectronic feedback system is converted into electronic noise to be 
electrically injected into the receiver, whereas the channel noise in both the 
optical injection and the optical feedback systems is optically injected into 
the receiver. Because the carrier decay rate is much smaller than the cavity 
decay rate , the carrier density fluctuation caused by the channel noise that is 
electrically injected into the receiver in the optoelectronic feedback system is 
much lower than the amplitude and phase fluctuations of the laser field caused 
by the channel noise that is optically injected into the receiver in the other 
two systems. However, because the laser noise directly causes fluctuations in 
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Fig. 1.14. BER versus SNR for the three different encryption schemes in the op- 
toelectronic feedback system. Each curve corresponds to the same curve in Figure 
1.12. 

the intracavity laser field, the laser noise in this system saturates the BER 
to a value higher than as it does in the optical injection system. Therefore, 
the effect of the laser noise on the BER performance of this system is very 
different from that of the channel noise. Note that the problem mentioned 
above that makes the use of the CSK scheme not possible for high-bit-rate 
communications with this system does not exist for the ACM scheme because 
no desynchronization bursts are observed when ACM is applied to this system. 
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1.4 CONCLUSION 

Conmiunications systems based on chaos and nonlinear dynamics are still in 
their infancy, although astonishing progress has been made in recent years. In 
the wireless arena, the technology promises a high degree of security because 
of the essentially non-periodic nature of the carrier. In addition, the simplicity 
and ease of control of these approaches makes them attractive candidates for 
low-cost secure communications. 
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A number of chaos-based communication schemes have been suggested, 
but many of these systems are very sensitive to distortion, filtering, and noise. 
We have examined several of the most promising approaches in this Chapter, 
including DCSK, CDSK, SCSK, and CPPM. At their best, these systems have 
comparable performance to traditional OOK systems, but with far greater 
security and low-observability. 

Three semiconductor laser systems— the optical injection system, the op- 
tical feedback system, and the optoelectronic feedback system — which are 
capable of generating broadband, high-frequency chaos for high-bit-rate com- 
munications have been considered in this chapter. The inherent advantage 
of any optical commimication system is its ability to handle high-bit-rate 
communications. Optoelectronic-feedback laser systems with ACM message 
encoding-decoding at 2.5 Gb/s has demonstrated chaotic optical communica- 
tion at a bit rate matching the requirement of the OC-48 standard. Chaotic 
optical communications at the OC-192 standard bit rate of 10 Gb/s are pos- 
sible when high-speed semiconductor lasers are used. 

The performance of each system at 10 Gb/s is numerically studied for 
the three encryption schemes of CSK, CMS, and ACM'. Noise sources have 
very significant effects on the system performance at high bit rates, primar- 
ily because they cause synchronization error in the forms of synchronization 
deviation and desynchronization bursts in these synchronized chaotic commu- 
nication systems. Among the three laser systems, the optoelectronic feedback 
system is least susceptible to noise-induced desynchronization and thus has 
the best performance, whereas the optical feedback system is most susceptible 
to noise-induced desynchronization arid, thus, has the worst performance. 

Among the three encryption schemes, it is found that, at high bit rates, 
only the performance of ACM with low-noise lasers is acceptable because ACM 
allows true synchronization in the process of message encoding by maintaining 
the mathematical identity between the transmitter and the receiver. Both 
CSK and CMS cause significant bursts or synchronization deviation in the 
systems because they break the identity between the transmitter and the 
receiver in the process of message encoding. The possibility of designing stably 
synchronized systems and optimized filters to improve the performance of 
synchronized chaotic optical communication systems is an important subject 
to be addressed in the future. 
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2.1 Introduction 

In the last two decades intensive studies of chaotic behavior have produced 
various methods for controlling chaos and ideas for its possible applications. 
Chaos found in nonlinear electrical circuits [1, 2, 3, 4] and lasers [5, 6, 7, 8, 9, 
10, 11] provides means for generation of chaotic signals that can potentially 
be used as carriers for information transmission. The simplicity of chaos gen- 
erators and the rich structure of chaotic signals are the two most attractive 
features of chaos that have caused a significant interest in possible utilization 
of chaos for communication. 

Since the chaotic signal is non-periodic, it cannot be stored in the receiver 
as a reference in order to achieve coherent detection of the transmitted signal. 
To overcome this problem, in some of the proposed communication schemes, 
the original chaotic waveform is transmitted along with the modulated sig- 
nal (transmitted reference scheme) either using a separate channel or using 
time division [12]. Thus, a reliable detection can be achieved at the expense 
of at least 3dB of the signal-to-noise ratio. In another approach, a chaotic 
reference is regenerated at the receiver using the phenomenon of chaotic syn- 
chronization [13]. It was shown in many experiments and theoretical studies 
that two coupled chaotic systems can be synchronized in a sense that chaotic 
system at the receiver can follow the time evolution of the identical system 
located in the transmitter. Therefore, a chaotic signal generated in the trans- 
mitter can be repUcated in the receiver in a stable manner [14, 15]. The 
regime of the transmitter-receiver synchronization was proposed as a possible 
mechanism for the recovery of information encoded in the received chaotic 
signal [16, 17, 18, 19]. 
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A number of chaos-based covert communication methods that mix an in- 
formation signal with a chaotic one and then recover the information using 
synchronization of chaos have been suggested [20]. In one class of these meth- 
ods, the information signal m{t) is added to the chaotic output Xeit) generated 
by a chaotic encoder whose oscillations do not depend on m{t). The mixture 
Xe{t) + m{t) is transmitted to the decoder where it is used as a driving signal 
for the matched response system. Various implementations of the matched 
response systems were proposed, see for example [21, 1, 2, 22, 23, 24] and 
references therein. The common shortcoming of such methods of communica- 
tion is that the driving signal which is "distorted" by the message m(t), does 
not perfectly fit the decoder. As a result, the recovered message mr{t) will 
always contain some traces of chaotic waveforms no matter how perfectly the 
parameters of the decoder match those of the encoder. 

A different approach to the problem of chaotic encoding and decoding was 
suggested in a number of papers [16,17, 25, 3, 26,18, 27]. The main idea of this 
approach is that information signal m{t) is injected into one of the feedback 
loops of the chaotic system, see Fig. 2.1. The feedback should be selected in 
such a way that the remaining subsystem (CT) is conditionally stable. In this 
case the distorted chaotic feedback signal Xe.{t) + m{t) returns back to CT 
and drives the encoder oscillations. When the same signal, Xe{t) + m{t), is 
applied to the decoder, it excites oscillations of the response system which 
are identical to the oscillations in the encoder. As the result the message 
m{t) can be recovered in the receiver using the open feedback loop of the 
response system. In this case (in the absence of noise), after initial transients, 
the information can be restored exactly. 

I Je(t)=x^t)+m (t) 

CT ^ J CT 

x(t) 

"V- m-' edit) -w^ ^-A^r- 
m(t) mr(t) I 

Fig. 2.1. Block-diagram of signal transmission with chaos suggested in [17]. Adapted 
from [28] 

All practical communication channels introduce signal distortions that al- 
ter the chaotic waveform, and as a result, the received chaotic oscillations do 
not precisely match the transmitter oscillations Xe(t) + m{t). Channel noise, 
filtering, attenuation variability and other distortions in the channel corrupt 
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the chaotic carrier and information signal. The presence of these channel dis- 
tortions significantly hamper the onset of identical synchronization of the 
chaotic systems [29, 30]. 

The strong sensitivity to the distortions of the chaotic signal and the re- 
sulting problems with chaos synchronization is the major obstacle for practical 
implementation of chaos-based communications systems. In order to overcome 
the problems of channel distortions, a number of special chaotic communica- 
tion methods have been proposed [31, 32, 33, 34, 35]. At least in theory and 
numerical simulations, it appears that the regime of identical synchronization 
in these specially designed systems is significantly less sensitive to channel 
noise and waveform distortions caused by the limited bandwidth of the chan- 
nel [28, 36, 37]. 

One of the ways to minimize the effects of channel distortions was sug- 
gested in [38] where a chaotically timed pulse sequences substituted contin- 
uous chaotic waveforms. Each pulse in the sequence has identical shape, but 
the time delay between them varies chaotically. Since the information about 
the state of the chaotic system is contained entirely in the timing between 
pulses, the distortions that affect the pulse shape will not significantly in- 
fluence the ability of the chaotic pulse generators to synchronize. Therefore 
synchronizing chaotic impulse generators can be utilized for communication 
via realistic wide-band channels and at the same time allow to use bandpass 
filters for noise reduction. The information can be encoded in the pulse train 
by alteration of time position of pulses with respect to chaotic carrier. This is 
the essence of the Chaotic Pulse Position Modulation (CPPM) system [39]. 

This proposed system belongs to the general class of ultra-wide bandwidth 
wireless communication systems. These systems received a significant atten- 
tion recently [40] (see also Chapter 4) because they offer a very promising 
alternative communication possibilities, especially in severe multi-path envi- 
ronments or where they have to co-exist with a large number of other wire- 
less systems. Chaotically varying spacing between narrow pulses enhances the 
spectral characteristics of the system by removing any periodicity from the 
transmitted signal. Because of the absence of characteristic frequencies, chaot- 
ically positioned pulses are difficult to observe and detect for the unauthorized 
user. Thus one expects that transmission based on chaotic pulse sequences can 
be designed to have a very low probability of intercept. A secure information 
transmission based on chaotic pulse trains with diflFerent method of informa- 
tion encoding, have been studied in [41]. 

The chapter is organized as follows. Section 2.2 gives a detailed overview 
of the CPPM system. In Section 2.3 we describe our implementation of the 
CPPM system and present the results of the experimental performance anal- 
ysis in communication through a model channel with noise, filtering, and 
attenuation. We also consider the limitations in its performance caused by 
parameter mismatch between transmitter and receiver. Experimental setups 
we used for the analysis of CPPM performance in realistic noisy channels are 
described in Section 2.4. The channels we studied include a model band limited 
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channel with white Gaussian noise, a low power wireless link and a free-space 
laser communication link. The last channel was characterized by the presence 
of severe communication signal distortions caused by atmospheric turbulence. 
Results of the experimental analysis are discussed in Section 2.5. Section 2.6 
describes a modification of the CPPM which improves the performance of 
CPPM in multi-user environment. 

2.2 CPPM basics 

In this section we describe the Chaotic Pulse Position Modulation system 
(CPPM). The CPPM method was suggested as a possible modification of the 
chaos-based communication approach shown in Fig. 2.1 which significantly 
reduces the sensitivity of this communication to the channel distortions [39]. 

2.2.1 CPPM principle and operation 

Consider a chaotic pulse generator which produces chaotic pulse signal 

oo 

U{t) = Y^w{t-tj), (2.1) 

where w{t - tj) represents the waveform of a pulse generated at time tj = 
to + Yfn=o'^ri, and T„ is the time interval between the n-th and (n - 1)- 
th pulses. We assume that the sequence of the time intervals, Tj, represents 
iterations of a chaotic process. For simplicity we will consider the case where 
chaos is produced by a one-dimensional map r„ = F(Tn-i), where F{ ) is 
a nonlinear function. Some studies of such chaotic pulse generators can be 
found in [38, 42]. 

The information is encoded within the chaotic pulse signal by using addi- 
tional delays in the interpulse mtervals, T„. As a result, the generated pulse 
sequence is given by a new map 

T„ = F(T„_i) + d + m5„, (2.2) 

where Sn is the information-bearing signal. Here we will consider only the case 
of binary information, and therefore, Sn equals zero or one. The parameter 
m characterizes the amplitude of modulation. The parameter d is a constant 
time delay which is needed for practical implementation of our modulation 
and demodulation method. The role of this parameter will be discussed later. 
In the design of the chaotic pulse generator, the nonlinear function F{ ), and 
parameters d and m are selected to guarantee chaotic behavior of the map. 

The modulated chaotic pulse signal U{t) = X^°lo"'(* - to - Z)„=o^n), 
where T„ is generated by Eq.( 2.2), is the transmitted signal. The duration 
of each pulse w{t) in the pulse train is assumed to be much shorter than 
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the minimal value of the inter-pulse intervals, T„. To detect information at 
the receiver end, the decoder is triggered by the received pulses, U{t). The 
consecutive time intervals T„_i and Tn are measured and the information 
signal is recovered from the chaotic iterations T„ with the formula 

Sn = {Tn-FiTn-i)-d)/m, (2.3) 

If the nonlinear function, F{ ), and parameters d and m in the receiver are 
the same as in the transmitter, then the encoded information, 5„, can be 
easily recovered. When the nonlinear functions are not matched with sufficient 
precision, a large decoding error results. Therefore, an unauthorized receiver 
who has no information about the dynamical system producing chaotic pulses 
in the transmitter, carmot determine whether a particular received pulse was 
delayed or not with respect to its original (chaotic) position, and thus whether 
Sn was "0" or "1". 

Since the chaotic map of the decoder in the authorized receiver is matched 
to the map of the encoder in the corresponding transmitter, the time of the 
next arriving pulse can be predicted. In this case the input of the synchronized 
receiver can be blocked up to the moment of time when the next pulse is ex- 
pected. The time intervals when the input to a particular receiver is blocked 
can be utihzed by other users, thus providing a multiplexing strategy. Such 
selectivity based on the synchronization between the transmitter and the re- 
ceiver can substantially improve the performance of the system by reducing 
the probability of false triggering of the decoder by channel noise. 

The method described above is easy to implement in analog circuitry, 
and we used it in our experimental studies. However, we expect that various 
modifications of the detection method can be suggested to improve the system 
performance or simplify theoretical performance analysis. Consider one of 
them. When the demodulator is synchronized to the modulator, in order to 
decode a single bit of transmitted information the demodulator must simply 
determine whether or not a pulse from the transmitter was delayed relative 
to its anticipated position. If the ideal synchronization is established, but 
the signal is corrupted by noise, the optimal detection scheme operates as 
follows. Integrate the signal over the pulse duration inside the windows where 
pulses corresponding to "1" and "0" are expected to occur. The decision on 
whether "1" or "0" is received is made based upon whether the integral over 
"l"-window is larger or smaller than that over "0"-window. Such detection 
scheme is employed in the ideal case of perfect synchronization in conventional 
(non-chaotic) Pulse Position Modulation (PPM) scheme. The performance of 
this scheme is known to be 3dB worse than the BPSK system. Although in the 
case of perfect synchronization this detection scheme is ideal, according to our 
numerical simulations, its performance quickly degrades when synchronization 
errors due to the channel noise are taken into account. For this reason and for 
the sake of design simplicity we use a threshold detector in all our experiments 
and analysis. 
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In a noise-free environment, the arrival time of chaotic pulses can be easily 
registered by a variety of methods. However, in a noisy environment, the re- 
ceiver can mistake a large noise fluctuation for an incoming pulse, and detect 
the wrong information bit. Furthermore, this false pulse can destroy chaotic 
synchronization, and thus prompt a sequence of errors until the receiver re- 
synchronizes with the transmitter. In fact, one of the advantages of using 
chaotic pulse generators is that the system re-acquires synchronization au- 
tomatically, without any specific "hand-shaking" protocol. The decoder only 
needs to detect two correct consecutive pulses in order to re-establish synchro- 
nization. We studied the bit-error performance in a noisy environment both 
theoretically and experimentally. The results of these studies are presented 
below. 

2.2.2 CPPM BER performance evaluation 

We characterize the performance of our system by studying the dependence 
of the bit error rate on the ratio of energy per one transmitted bit to the 
spectral density of noise, Eb/No. This dependence is shown in Fig. 2.3, where 
it is compared to the performance of more traditional communication schemes, 
BPSK, PPM, and non-coherent FSK. 

We can obtain a rough analytical estimate of the CPPM BER performance 
of our detection scheme in the case of rectangular pulse shape. In order to do 
so, let us consider a simplified model of our detection method. In the detector 
the signal that is a sum of the transmitted pulse signal and WGN is low-pass 
filtered and is applied to a threshold element. Let us assume that the low pass 
filter can be approximated by the running average filter: 

y{t) = \f xiOdC 
T Jt-T 

Let the windows where the pulses corresponding to "1" and "0" have the 
same duration, T, see Figure. 2.2. We shall assume that the receiver maintains 
synchronization at all times, so that every "0"-pulse is within the "0"-window, 
0 < i < T, and every "l"-pulse is within "1" window, T < t < 2T. Let us 
divide the interval where "0"-pulse is expected into bins of duration 1//, 
where / is the filter cut-off frequency. We shall assume that / = 1/T, T being 
the pulse duration, and that when a pulse arrives, it is contained entirely 
within one bin. We shall sample the output y(t) from the filter once at the 
end of every bin. 

In our model detection scheme the threshold element is set off when the 
the output from one of the bins is larger than the threshold. If the threshold 
is crossed where a pulse corresponding to "0" is expected, a "0" is detected, 
otherwise a "1" is detected by default. 

Let A be the pulse ampUtude, H - the threshold value, and cr"^ - the noise 
variance at the filter output. 
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Fig. 2.2. The illustration of the detection scheme. 

First, we evaluate the error probability when "1" is transmitted, Po|i. This 
probability can be found from Pi|i + Po|i = 1) where Pi|i, the probability to 
correctly detect "1" can be easily found. It is the probability that the filter 
output, yi, from any bin in the "0" does not exceed the threshold. Using the 
statistical independence of the measurements for each window in the case of 
white noise, we can write: 

T/r 

Pi\i = llP'iyi<H) = \p{y<H)] T/r 

i=l V2 biy^i-^)"^ 
l + erf iM 

T/T 

WH"^. 
T/r 

Here we introduced the relative threshold value, h - H/A, the energy per 
bit, Eb = A^T, and the spectral power density of noise. No = ICP'T. 

The probability to detect "0" when "1" is transmitted is then: 

rpr-\ \ -\ '^l-' 
Poll = 1 - Pi|i = 1 2\''-^''V\No 

The error probabihty in the case when "0" is transmitted can be found 
similarly. The error occurs when the output from all bins in the "0" window 
remains lower than the threshold, despite the fact that the transmitted signal 
is non-zero within one of them: 

T/r-l 

'lio b/l^^(-^)'^ V2na 

V2 

1       f"        (   {x-A)''\ 
dx 

-(l + erf (M xl.fl + erf,    ^ 
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Rewriting the last part of the equation in terms of the relative threshold 
value, h, the energy per bit, Eb, and the spectral power density of noise, NQ 

one obtains 

A|o = i-4'./f. 
T/T-1 

The overall error probability is the combination of Pi|o and Po|i: BER — 
Pi-Po|i + (1 —Pi)Pi\o where pi is the characteristic of the data stream which 
is the ratio of "l"s in it. In our experiment both pi and h were equal to 1/2. 
In this case the expression for the BER can be written in a shorter form: 

BER=^-\1 erf x^ i(--(f 
T/T-1^ 

where e = Eb/No 

^0" 

10" 

10- 

P 10" 

10"' 

10" 

10"' 

Fig. 2.3. Error probabilities of ideal BPSK, non-coherent FSK, and ideal PPM 
systems compared to the performance of the CPPM system. 

Figure 2.3 shows the BER performance of the CPPM as estimated an- 
alytically, computed in numerical simulations with h = 0.5, pi = 0.5 and 
T/T = 10 and measured in the experiment. The difiference of approximately 
IdB between the analytical and numerical curves can be largely attributed to 
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burst errors arising from the loss of synchronization, which is not taken into 
account in our model. Details on the experimental setup used to obtain the 
experimental BER data are given in Section 2.4. 
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Fig. 2.4. Block diagram (top panel) and schematics (bottom panel) of the chaotic 
pulse modulator. 

2.3 CPPM implementation 

2.3.1 CPPM implementation 

The implementation of the chaotic pulse modulator used in our experiments 
is illustrated in Fig. 2.4. The Integrator produces a linearly increasing voltage, 
y{t) = /3~^(t-t„), at its output. At the Comparator this voltage is compared 
with the threshold voltage produced at the output of the nonlinear converter 
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F{x). The threshold level F(V„) is formed by a nonlinear conversion of voltage 
Vn = V{tn) which was acquired and saved from the previous iteration using 
sample and hold (S&H) circuits. When voltage V{t) reaches this threshold 
level, the comparator triggers the Pulse Generator I. It happens at the moment 
of time t'n+i = tn+PF(Vn). The generated pulse (Chaotic Clock Signal) causes 
the Data Generator to update the transmitted information bit. Depending on 
the mformation bit transmitted, 5„+i, the Delay Modulator delays the pulse 
produced by the Pulse Generator by the time d+mSn+i- Therefore the delayed 
pulse is generated at the moment of time tn+i = tn + 0F{Vn) + d + mSn+i- 
Through the sample and hold circuit (S&H) this pulse first resets the threshold 
to the new iteration value of the chaotic map V{tn+i) ->■ F{V{tn+i)), and then 
resets the integrator output to zero, V{t) = 0. The dynamics of the threshold 
value is determined by the shape nonlinear function F(). The spacing between 
the n-th and (n + l)-th pulses is proportional to the threshold value Vn, which 
is generated according to the map 

T„+i = pFir^Tn) + d + mSn+i, (2-4) 

where r„ = tn-i - tn, and 5„ is the binary information signal. In the ex- 
perimental setup the shape of the nonlinear function was built to have the 
following form 

(ax iix< 5V, .„ ^. 
^(^) = "/(^) = \a(10y-a;)    iix>5V. ^^'^^ 

The selection of the nonlinearity in the form of piece-wise linear function helps 
to ensure the robust regimes of chaos generation for rather broad ranges of 
parameters of the chaotic pulse position modulator. 

The position-modula;ted pulses, w{t-tj) are shaped in the Pulse Generator 
II. These pulses form the output signal U{t) = Ejlo'^(* "" *j)> ^'^^^^ ^^ 
transmitted to the receiver. 

The demodulator scheme is illustrated in Fig. 2.5. In the receiver the Inte- 
grator, S&H circuits, and the nonlinear function block generating the thresh- 
old values are reset or triggered by the pulse received from the transmitter 
rather than by the pulse from the internal feedback loop. To be more precise, 
they are triggered when the input signal, U{t), from the channel exceeds a 
certain input threshold. The time difference between the anticipated location 
of the pulse without modulation, t'^+i = in + f3F{Vn), and the actual arrival 
time tn+i translates into the difference between the threshold value, F{Vn) 
generated by the nonlinear function and the voltage, V{tn+i) at the Integra- 
tor at the moment when the input signal, U(t) exceeds the input threshold. 
For each received pulse the difference V{tn+i) - PiVn) is computed and is 
used for deciding whether or not the pulse was delayed. If this difference is 
less than the reference value P{d + m/2), the detected data bit 5„+i is "0", 
otherwise it is "1". 

Another important part of the receiver is the Window Selection block. 
Once the receiver correctly observes two consecutive pulses, it can predict the 
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Fig. 2.5. Block diagram (top panel) and schematics (bottom panel) of the chaotic 
pulse demodulator. 

earliest moment of time when it can expect to receive the next pulse. This 
means that we can block the input to the demodulator circuit until shortly 
before such a moment. This is done by the Window Select block. In the exper- 
iment, this circuit opens the receiver input at the time t'^^i = tn + l3F{Vn) by 
Window Control pulses generated by the Comparator (see Fig. 2.5). The in- 
put stays open until the decoder is triggered by the first pulse received. Using 
such windowing greatly reduces the chance of the receiver being triggered by 
noise, interference or pulses belonging to other users, however it may increase 
the time necessary to re-acquire synchronization after a string of erroneous 
pulses. 
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2.3.2 Parameters mismatch limitations 

It is known that because the synchronization-based chaotic communication 
schemes rely on the identity of synchronous chaotic oscillations, they are sus- 
ceptible to negative effects of parameters mismatches. Here we evaluate how 
precisely the parameters of our modulator and demodulator have to be tuned 
in order to ensure errorless communication over a distortion-free channel. 

Since the information detection in our case is based on the measurements 
of time delays, it is important that the modulator and the demodulator can 
maintain synchronous time reference points. The reference point in the mod- 
ulator is the front edge of the Chaotic Clock Pulse. The reference point in the 
demodulator is the front edge of the Window Control Pulse. Ideally, if the 
parameters of the modulator and the demodulator were exactly the same and 
the systems were synchronized, then both reference points would be always 
at the times t^^j = tn + PPiVn), and the received pulse would be delayed 
by the time d for 5„+i = 0 and d -t- m for 5„+i = 1. In this case, setting the 
bit separator at the delay d + m/2 would guarantee errorless detection in a 
noise-free environment. 

Fig. 2.6. Histograms of the fluctuations of the received pulse positions with respect 
to the receiver reference point: noise-free channel (top panel) and channel with WGN 
Eb/No ~ 18dB (bottom panel). 

In an analog implementation of a chaotic pulse position modulator and de- 
modulator systems, the parameters of the circuits are never exactly the same. 
Therefore, the time positions tn^^^ and t'.^^^ of the reference points in the mod- 
ulator and the demodulator chaotically fluctuate with respect to each other. 
Due to these fluctuations the position of the received pulse, i„ =tn + d+ Sn, 
is shifted from the arrival time predicted in the demodulator, t„ +d + Sn- 
The errors are caused by the following two factors. First, when the amplitude 
of fluctuations of the position shift is larger than m/2, some delays for "0"s 
and "l"s overlap and cannot be separated. Second, when the fluctuations are 
such that a pulse arrives before the demodulator opens the receiver input 
{t„ < t'.^^^), the demodulator skips the pulse, loses synchronization and can- 
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not recover the information until it re-synchronizes. In our experimental setup 
the parameters fiM,D were tuned to be as close as possible, and the nonhnear 
converters were built using 1% components. The fluctuations of the positions 
of the received pulses with respect to the Window Control pulse were studied 
experimentally by measuring time delay histograms. Figure 2.6 presents typi- 
cal histograms measured for the case of noise-free channel and for the channel 
with noise when Eb/No ^ 18dB. 

Assuming that systems were synchronized up to the (n - l)-st pulse in the 
train, the fluctuations of the separation between the reference time positions 
equals 

A   _ AD)     AM) _ 

POFDWD'TU-I) - /3Mi^M(/3M T„_i), (2.6) 

where indices D and M stand for demodulator and modulator respectively. 
As it was discussed above, in order to achieve errorless detection, two con- 
ditions should be satisfled for all time intervals in the chaotic pulse train 
produced by the modulator. These conditions are the synchronization condi- 
tion, {An}max < d, and the detection condition {|/i„|}max < TO/2. AS an 
example we consider the simplest case where all parameters of the systems 
are the same except for the mismatch of the parameter a in the nonhnear 
function converter, see Eq.(2.5). Using Eq.(2.5) and Eq.(2.6) the expression 
for the separation time can be rewritten in the form 

An = {aD - aM)mr'Tn-i). (2.7) 

It is easy to show that the largest possible value of the nonlinearity output 
/(), which can appear in the chaotic iterations of the map, equals to 5V. Note 
that in the chaotic regime only positive values of /() are realized. Therefore, 
if conditions 

/3{aD - aM) < d/5V and 2P\aD - (XMI < m/5V. (2.8) 

are satisfied and there is no noise in the chaimel, then information can be 
recovered from the chaotic pulse train without errors. 

2.4 Experimental studies of CPPM with channel 
distortions 

2.4.1 CPPM experiment with model channel 

For the experimental evaluation of BER performance in band-limited noisy 
channel we transmitted the CPPM signal mixed with white Gaussian noise 
over channel modeled with active bandpass filter (Fig. 2.7). We used a com- 
puter with a data acquisition board as the data source. Each update of the 
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Fig. 2.7. Diagram of tlie experiment. 

information bit loaded to the CPPM encoder was triggered by the chaotic 
clock generated in the transmitter. The computer calculated the displacement 
of the received chaotic pulse from the demodulator subtractor and detected 
the received information bit using a threshold element. 

The model channel circuit consisted of WGN generator and a bandpass 
filter with the pass band lkHz-500kHz. The pulse duration was 500ns. The 
distance between the pulses varied chaotically between 12^s and 25/is. This 
chaotic pulse train carried the information flow with the average bit rate 
~60kb/sec. The amplitude of pulse position modulation, m, was 2/is. More 
details on the spectral characteristics of CPPM signals in passing through this 
model channel can be found elsewhere [43] 

2.4.2 Wireless implementation of CPPM 

We have implemented and tested a low power prototype of wireless digital 
communication link using the chaotic pulse modulator and demodulator de- 
scribed above. The circuit diagrams of the transmitter and receiver units, 
which were added to the CPPM modulator and demodulator blocks to pro- 
vide the wireless link, are shown in Figs. 2.8 through 2.11. 

Transmitter 

The transmitter contains the generator of a pair of symmetric short pulses 
(SPG) and the symmetric exciter for the two-pole antenna, see Figure 2.8. 
SPG is triggered by a TTL pulse ( 500ns) from the output of the CPPM 
modulator (see Fig. 2.4) and generates a short pulse ( 20ns measured at a half 
of the amplitude). This short pulse is applied to the symmetric exciter that 
has two outputs see Fig. 2.9. The first output produces a high voltage positive 
pulse. The second output produces a high voltage negative pulse. These two 
outputs are applied to the corresponding poles of the antenna. 
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Fig. 2.8. Block-diagram (top panel) and schematics (bottom panel) of the ultra- 
wide band transmitter used in the wireless CPPM communication system 
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Fig. 2.9. Voltage pulse on the transmitter antennas Antl (solid hne) and Ant2 
(dotted hne) in the exciter circuit, shown in Fig. 2.8 with Vcc=100V. Plots are 
calculated using MicroSim circuit simulator. 
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Fig. 2.10. Power spectral density of signals measured in the frequency range from 
0 to 200 MHZ. The background noise measured with the CPPM transmitter turned 
off is shown in (a). Panels (b), (c) and (d) present the spectra of the CPPM signal 
measured at the distance L from the CPPM transmitting antenna: L=lm (b); L=3m 
(c)and L=10m (d). 

,Vcc Vcc 

Anf1 

Fig. 2.11. Block diagram of the pulse receiver 

Receiver 

The block diagram of the receiver is presented in Fig. 2.11. The electromag- 
netic pulses received by the two-pole antenna (Antl and Ant2) are applied 
to the differential amplifier whose output is then amplified in the two-stage 
amplifier (Amp) and send to the symmetric detector circuit. The output of 
the symmetric detector is then amplified by the second differential amplifier 
to generate enough voltage for triggering of pulse generator (PG) which pro- 
duces the TTL pulse of the duration about 500ns. The TTL pulse is then 
appHed to the CPPM demodulator block shown in Fig. 2.5. 
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Fig. 2.12. Schematics of the Ultra Wide Band receiver used in the wireless CPPM 
system 

We tested our prototype wireless CPPM system in indoor experiments 
with separation between transmitter and receiver of up to 15 m and were able 
to achieve a stable regime of error-free communication. 

2.4.3 Optical chaos communication through turbulent atmosphere 

The ability of the self-synchronizing CPPM method to commimicate m the 
presence of significant non-stationary signal distortions in the channel has 
been studied experimentally using a free-space laser communication link [44]. 
Here the communication carrier signal consists of a sequence of optical pulses 
that travel through air. The characteristics of the communication channel are 
thus determined by the optical properties of air and the severe communication 
signal distortions in this experiment are a result of atmospheric turbulence. 

A schematic representation of the chaotic free-space laser communication 
system is shown in Fig. 2.13. In this experiment the CPPM modulator circuit 
described in Section 2.3.1 was used to modulate the output-intensity of a 
semiconductor laser (A = 690 nm). The resulting Intensity-modulated 10 mW 
semiconductor laser beam was coupled into a single-mode fiber. The beam 
emanating from the fiber was first expanded to a 4" diameter using a lens relay 
system (lenses Li, L2) and a Celestron transmitter-telescope and was then 
directed through a 26 ft long vertical air-locked pipe to a 45° mirror placed 
inside a shed on the roof of the building. From there the light propagated 
over an atmospheric path of length i ~ 2.5 km to a 4" corner cube reflector 
placed on top of a water tower. After reflection the laser beam propagated 
from the water tower back to a communication receiver telescope in the roof- 
mounted shed. The receiver system used the same Celestron telescope and 
lens relay system (lenses Li and L3) as did the transmitter system. The total 
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double-pass atmospheric laser beam propagation distance was approximately 
21, ~ 5 km long. The received light power was registered by the PIN photo- 
detector (PDA55) placed in the lens L3 focal plane, amplified by the low-noise 
preamplifier (SR560 with a gain of 20), and the resulting signal served as input 
to the CPPM demodulator circuit (see Section 2.3.1). 

Roof-mounted 
45° mirror 
(h=125 

Atmospheric propagation 
(2.5 km) 

Comer reflector 

Water tower 
(h=215 ft) 

telescope 
(4", F/5) 

Chaotic laser conirnunication transceiyer 
Laser 

Photo-detector 

CPPM 
Tx 

Data In 

Amplifier 
(SR560) -► 

CPPM 
Rx 

tor ,Pa taC )ut 

Fig. 2.13. Schematic for the free-space laser communication system based on the 
CPPM transceiver. Details are given in the text, (adopted from [44]) 

2.5 CPPM performance and features 

2.5.1 Experimental BER performance evaluation 

We experimentally evaluated the BER performance of CPPM system using 
the model channel setup shown in Fig. 2.7. We measured the dependence of 
BER on the ratio Eb/No, where Eb is the energy of CPPM signal per bit and 
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No is spectral density of noise. This dependence is plotted in Fig. 2.3 along 
with the analytical and numerical estimates which we discussed in Section 2.2. 

The slightly better than expected performance of the experimental system 
at high levels of noise can be explained by the observed significant devia- 
tions of the noise distribution from Gaussian at high noise amplitudes. The 
quicker than expected degradation of performance at low levels of noise is 
primarily due to the small mismatch of the parameters in the transmitter and 
the receiver. Still, considering the crudeness of the analytical model and the 
experimental difficulties, all three plots agree reasonably well. 

2.5.2 Eflfects of atmospheric turbulence in an opticjil chaos 
communication experiment 

We tested the self-synchronizing CPPM communication scheme in an exper- 
iment where information was transmitted over a ~ 5 km laser hnk through 
turbulent air. Turbulence in the atmospheric communication chaimel leads to 
severe laser beam intensity scintillations that result in deep fluctuations of the 
received communication signal (received laser beam power). The most dele- 
terious effects from receiver plane scintillations are the loss of signal-to-noise 
ratio and drop-outs (information loss). 

1.0 10.0 
/[Hz] 

Fig. 2.14. Fluctuations of the received power P(t) in the experiment with a non- 
modulated laser generating a constant output intensity (lOmW). The normalized 
received power P{t)/{P{t)} measured at the photo-detector output - (a), and the 
corresponding averaged power spectrum - (b) illustrate the presence of strong laser 
beam intensity scintillations, (c) Histogram of the probability distribution for the 
random variable ln(P/(P)). 

To demonstrate the level of intensity scintillations in the atmospheric chan- 
nel, we measured the received signal from a continuously running laser with 
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constant output intensity. Figure 2.14a shows the fluctuations of the normal- 
ized received power, measured by the PIN photodetector placed in the lens 
L3 focal plane (Fig. 2.13), amplified by the low noise preamplifier (SR500 
with gain of 20), and then acquired with sampling rate 1000 samples/sec. 
The corresponding ensemble-averaged received signal power spectrum S{f) is 
shown in Fig. 2.14b. The severeness of the signal distortions is clearly visi- 
ble in Fig. 2.14 and is quantified by an estimated standard deviation of the 
normalized received signal as high as 0.8-0.9, which is indicative of a strong 
scintillation regime. In atmospheric optics the laser beam scintillations are 
traditionally described in terms of the distribution of the logarithm of the 
received power (for finite receiver telescope): ln(P/{P)), where (P) is the 
ensemble (time) averaged value [45]. The histogram of the random variable 
ln(P/(P)) is shown in Fig. 2.14c. Representing an approximation to the prob- 
ability distribution of the received power the histogram closely matches the 
log-normal distribution that theory predicts for turbulent atmosphere [45]. 

In the communication experiment the CPPM modulator described in Sec- 
tion 2.3.1 (denoted by CPPM Tx in Fig. 2.13) generates a sequence of TTL 
pulse signals that are used to trigger the laser resulting in a chaotic sequence 
of short-term (~1.0/is) pulses of light-intensity. The interpulse intervals {T„} 
fluctuated chaotically ranging from lO/usec to 25/isec and supported a ~ 60 
kbit per sec bit-rate. After the double-pass propagation through air the dis- 
torted light-pulses are detected by the PIN photo diode, the output of which 
is applied to the CPPM demodulator circuit (CPPM Rx in Fig. 2.13). If the 
output exceeds a certain input threshold, which in our experiment was set to 
~ 200 mV, the timer circuit in CPPM Rx is triggered and the information 
signal is recovered from the chaotic iterations of interpulse intervals, {T„}, 
using formula (2.3). 

The CPPM communication method encodes information in the interpulse 
intervals {T„} and can therefore tolerate strong signal distortions and am- 
plitude variations Hke the ones caused by atmospheric turbulence as long as 
fluctuations of the propagation time in the turbulent channel remain small. 
Figure 2.15a illustrates the severe pulse amplitude fluctuations of the signal 
entering the CPPM demodulator. Figure2.15b shows the pulse propagation 
time Tm, which is measured between the leading front of the TTL pulse ap- 
plied to the laser and the maximal point of the received pulse. It varied only 
within a 0.2/i sec time interval. However, in order to trigger CPPM Rx the 
received pulse amplitude has to exceed a certain threshold level. This level 
(~ 200 mV) was selected to minimize instances of receiver controller trigger- 
ing caused by noise, or by pulses originating from local pulse reflections off 
nearby optical surfaces. Therefore, the actual delay time n, measured between 
the leading front of TTL pulses generated by CPPM Tx and the moments of 
CPPM Rx triggering, depends on the ampUtude of the received pulses and 
fluctuates, see Fig. 2.15c. Although n changes with the amplitude variation 
these changes remain less than the modulation amplitude m ~ l.bfisec, see 
Eq. (2.2). Thus, the variations of the pulse propagation time are small enough 
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100 
t [msec] 

Fig. 2.15. Fluctuations of the CPPM pulses of Ught intensity after travehng through 
atmospheric turbulence. Pulse amplitude Ap measured in volts at the output of 
amplifier - (a). Propagation times Tm - (b) and n - (c) in ^sec, The pulse propagation 
times are computed from data acquired simultaneously at the output of CPPM Tx 
and output of Amplifier (SR560) at a sampling rate of 5x10^ samples per sec. 

for. the CPPM controller to self-synchronize and to maintain the stability of 
the communication link. 

The gaps visible in Fig. 2.15b and Fig. 2.15c are caused by pulse ampli- 
tude fading when the pulse amplitude falls to the. photo-receiver noise level 
and below threshold level, respectively. The gaps are audible as occasional 
clicks, when using the free-space laser communication system described here 
for real-time voice communication, which was implemented by digitizing the 
output of a microphone with a delta-modulator and transmitting the binary 
signal. Except for these short-term (less than 50msec) drop-offs, the voice 
communication was stable and clear. 

Figure 2.16 shows an exarriple of a map of communication errors that 
resulted from the transmission of binary pseudo-random data. The total BER 
of 1.92 X lO"^ measured in this experiment has three contributions. First, the 
loss of bits carried by the pulses which did not trigger the CPPM receiver due 
to the fading m the channel contributes ~ 1.78 x 10"^ to the BER (~ 92.7%). 
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Fig. 2.16. Typical structure of errors shown in 20 consecutive measured data 
streams each of length ~170 msec transmitted at ~2 min intervals. Each strip 
presents 10000 bits which are transmitted with the CPPM method. White inter- 
vals of the strips mark blocks of data received without errors. Narrow black ribbons 
in the middle of strips mark the blocks of the data received with errors. The gray 
background shows the blocks of the dropped out data caused by the loss of CPPM 
pulses due to fading instances. 

The fading moments occur randomly during the communication and cause 
the drop-outs of blocks of data up to 1000 consecutive bits. Second, errors 
that occur within time intervals immediately before and after the failure of 
communication by fading contribute ~ 1.4 x 10~^ to the BER (~ 7.3%). In 
these time intervals the amplitude of the received pulses is still close to the 
threshold and, as consequence, even small noise in the channel can result in 
significant fluctuation of the interpulse intervals (see Fig. 2.15c). Third, errors 
that are hot related to the complete failure of the channel because of fading 
instances contributed to the BER only ~ 5.5 x 10~^. 

This structure of errors indicates that the CPPM communication method 
supports robust communication over a turbulent channel except for in- 
stances when the communication link fails due to fading. Thanks to the self- 
synchronizing feature of the CPPM method and the fact that the CPPM 
receiver needs to obtain just two consecutive correct pulses to re-establish the 
regime of chaos synchronization, the communication after drop-out events is 
re-established almost immediately. 
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2.5.3 Wireless CPPM and Low Probability of Detection 

In the experiments with wireless CPPM, we studied spectral characteristics of 
the chaotic pulse signal radiated by the wireless CPPM. The Power Spectral 
Density (PSD) was measured with HP 8590A Portable RF Spectrum Ana- 
lyzer using a two-pole receiving antenna. The results of the measurements are 
presented in Figures 2.10. The PSD of the signal received by the RF spec- 
trum analyzer, when CPPM transmitter is turned off, is shown in Fig. 2.10a. 
The spectrum was measured in the range of frequencies from 1 MHz to 200 
MHz with the video bandwidth filter of 3 MHz. The same measurements were 
done when the CPPM transmitter was turned on. The amplitude of the pulse 
measured across the poles of the transmitting antenna is about 130 V. Dura^ 
tion of the pulse is about 30 nsec. Figure 2.10 presents measured PSD of the 
received RF signal at two distances from the transmitting antenna (1 and 10 
m). As one can see, already at 10m the signal PSD is at the level or below 
the background RF noise. This shows a potential for using CPPM systems in 
applications requiring low probability of detection. 

Here we use the results of the experimental analysis of radiated pulse 
signals to illustrate the advantages of CPPM over more conventional com- 
munications schemes ia the area of low probability of detection. The existing 
communications schemes rely on digitally generated pseudo-random sequences 
to eliminate from transmitted signals the features that allow an adversary to 
detect and intercept the transmission. This approach has two intrinsic short- 
comings. 
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Fig. 2.17. The spectrum of a transmission of a pulse train with pseudo-random 
pulse timing (left panel). The reference spectrum of the background (right panel). 
The start frequency is 20 MHz and the stop frequency is 80 MHz. 

First, the pseudo-random sequences eventually repeat, and second, the 
digital character of the generation algorithm introduces into the signal fea- 
tures associated with the corresponding quantization. These two points are 
illustrated in Fig. 2.17, where we show the spectrmn of a pseudo-random pulse 
sequence transmitted by the same method as in the CPPM transmission. The 
transmitted signal consisted of a periodically repeated sequence of 128 pulses 
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Fig. 2.18. The spectrum of a transmission of a pulse train with pseudo-random pulse 
timing (the same as in Figure 2.17), but measured at a finer frequency resolution 
(left panel). A typical spectrum of a CPPM transmission measured with the same 
resolution (right panel). 

with the timing determined by the raising edges of a pseudo-random sequence 
of the length of 511 bits. 

In Figure 2.17 (left panel) one can clearly see the periodicity due to 
the quantization in the pseudo-random timing sequence, with the chip rate 
~ 5.4 MHz. The peaks in Figure 2.18 (left panel) are due to the periodic 
repetition of the pseudo-random sequence, with the characteristic frequency 
~ 10.5 kHz. Either of these features can be exploited in order to detect such 
transmission. For comparison, in the Figure 2.18 (right panel) we see the 
spectrum of a chaotic pulse train, with the same frequency resolution as in 
Figure 2.18 (left panel). CPPM avoids both sources of periodicity present in 
the pseudo-random pulse train transmission, and, as expected, its spectrum 
does not show the corresponding peaks. 

More complicated methods'* used for detection of pseudo-random pulse 
transmissions can be applied in order to discover chaotic pulse transmission. 
These methods however become much more efficient, if one can recover a time 
reference, which in the case of CPPM transmission is more difficult. 

2.6 Multi-user extension of CPPM 

Direct application of CPPM in a multi-user environment leads to a significant 
performance degradation. If multiple transmitters are operating at the same 
time, receiver "A" can capture pulses from other transmitters which would 
occasionally fit into the reception windows of the receiver, thus creating errors 
in the bit detection, and moreover, causing synchronization breakdowns. To 
reduce the probability of these events, we propose to send a fixed group of 
pulses instead of a single pulse. The structure of the pulse train should be 

* We should point out that such simple and apparent scheme as observing a pulse 
sequence on an oscilloscope is not very efficient in noisy environment, with band- 
pass filtering due to antennas. Many (or all, if there is no transmission) pulses 
will appear due to noise. 
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unique for a given user, and the transmission time for the train as before 
is determined by the chaotic map. The detection of the pulse train arrival is 
achieved by the matched filter (correlation detector), thus providing selectivity 
and processing gain. The output of the correlator is then processed in the 
receiver in the same way as a single pulse is processed in the original scheme 

Fig. 2.5. 
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Fig. 2.19. Bit-error rate as a function of the number of users in a multipulse 
CPPM scheme. Circles correspond to the MP-CPPM, and triangles to the case of 
line corresponds to the standard (periodic) PPM scheme. 

We tested this scheme in numerical simulations with up to 20 users. The 
pulse train patterns were chosen to minimize the maximum cross-correlation 
between different pulse trains. Chaotic intervals between the pulse trains were 
generated by the tent map with the slope 1.3. Then at the transmitter, the 
pulse train was produced either at time T„ - 5 or T„ -f S, depending on the 
value (0 or 1, respectively) of bit 6„ being transmitted. Unlike the single-pulse 
CPPM, the detection scheme is based on the position of the maximum output 
of the correlator withm a certain window with respect to the nominal (deter- 
mmed by the chaotic clock) position T„. If the pulse train arrival time is closer 
to Tn-6 than to Tn+S, bit 0 is registered, and otherwise bit 1 is registered. We 
also employed an adjustable window size depending on the magnitude of the 
output from the matched filter, so when the signal is weak (synchronization 
is lost), the window becomes large in order to re-establish synchronization. 
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Figure 2.19 shows the bit-error rate as a function of the number of users for 
50-pulse trains. As was mentioned above, the performance of this system is 
degraded by occasional de-synchronization events. For comparison, a corre- 
sponding plot for ideally synchronized chaos oscillator at the receiver and 
transmitter, is shown. As can be seen, the difference between these graphs is 
approximately 25% in terms of the number of users. 

2.7 Conclusions 

Discussing chaos-based communication systems, one may notice a potential 
disadvantage common to all such schemes utilizing synchronization. Most tra- 
ditional schemes are based on periodic signals and carrier waveforms stored 
at the receiver and not transmitted through the channel. All such systems are 
characterized by zero Kohnogorov-Sinai entropy HKS [46]: in these systems 
without any input the average rate of non-redundant information generation 
is zero. Chaotic systems have positive HKS and continuously generate infor- 
mation. In the ideal environment, in order to perfectly synchronize two chaotic 
systems, one must transmit an amount of information per unit time that is 
equal to or larger than KKS [46]. Although our detection method allows some 
tolerance in the synchronization precision, the need to transmit extra informa- 
tion to maintain the synchronization results in an additional shift of the actual 
CPPM performance curve relative to the case when ideal synchronization is 
assumed. Since the numerical and experimental curves in Fig. 2.3 pass rather 
close to the analytical curve that assumes synchronization, the degradation 
caused by non-zero Kolmogorov-Sinai entropy does not seem to be significant. 

Although CPPM performs slightly worse than BPSK, non-coherent FSK 
and ideal PPM, we should emphasize that (i) this wideband system provides 
low probability of intercept and low probabihty of detection; {ii) improves the 
privacy while adding little circuit complexity {in) to our knowledge, this sys- 
tem performs exceptionally well compared to most other chaos-based covert 
communication schemes [47]; {iv) there exist a multiplexing strategy described 
above that can be used with CPPM (see also [48, 49]) (u) compared to other 
impulse systems, CPPM does not rely on a periodic clock, and thus can elim- 
inate any trace of periodicity from the spectrum of the transmitted signal. All 
this makes CPPM attractive for development of chaos-based communications. 
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Summary. We describe two different approaches to employ chaotic signals in 
spread spectrum (SS) communication systems with phase and frequency modula- 
tion. In the first one a chaotic signal is used as a carrier. We demonstrate that using 
a feed back loop controller, the local chaotic oscillator in the receiver can be syn- 
chronized to the transmitter. The information can be transmitted using phase or 
frequency modulation of the chaotic carrier signal. In the second system the chaotic 
signal is used for frequency modulation of a voltage controlled oscillator (VCO) to 
provide a SS signal similar to frequency hopping systems. We show that in a certain 
parameter range the receiver VCO can be synchronized to the transmitter VCO 
using a relatively simple phase lock loop (PLL) circuit. The same PLL is used for 
synchronization of the chaotic oscillators. The information signal can be transmitted 
using a binary phase shift key (BPSK) or frequency shift key (BFSK) modulation of 
the frequency modulated carrier signal. Using an experimental circuit operating at 
radio frequency band and a computer modelling we study the bit error rate (BER) 
performance in a noisy channel as well as multi-user capability of the system. 

3.1 Introduction 

Spread Spectrum (SS) communications is one of the most rapidly developing fields 
in both theory and applications of electrical engineering. Spreading the spectrum 
can considerably improve the characteristics of communication systems. The larger 
frequency band and the lower spectral density of the signal complicate the signal 
detection problem for a surveillance receiver, which combined with other design 
attributes ensures the Low Probability of Intercept (LPI) for SS systems. In the 
SS receiver knowledge of parameters of transmitted signal, such as the spreading 
function, is effectively used to reject the independent interference or jammer signal. 
This results in the capability of SS systems to operate in a multi-user environments, 
where several users operate in the same frequency band and use Code Division 
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Multiple Access (CDMA) to separate the different users. Not all interference signals 
are independent. In a multipath propagation environment the jammer is a replica of 
the transmitted signal shifted in time and frequency. SS systems are able to reject 
this type of jammer signal, which is a result of High Resolution Time of Arrival 
(TOA) Measurements typical for SS systems (see, for example [1], [2]). 

In spite of fact that the main principles of SS have been known for more than 60 
years, the SS systems were mostly used for military applications where such factors as 
reliability, security, accuracy, jamming resistance usually prevail over complexity and 
manufacturing costs. Only recently, tremendous improvements in integrated circuit 
technology have made SS systems available as popular consumer products. These 
include mobile phones and Wireless Personal Area Networks (WPANs)- micro power 
indoor radio communication devices, connecting portable consumer electronics [3]. 

The key element of any SS system is the spreading technique. After decades of 
research many different methods (analog, digital, opto-mechanical, etc.) of generat- 
ing high frequency broad band noise-like signals have been developed. These signals 
can be generated directly from a high frequency source, for example by amplifying 
and filtering a thermal noise voltage on a resistor, or by modulating a high frequency 
sinusoidal carrier by a low frequency broad band signal. In modern SS communica- 
tion systems pseudo-noise (PN) sequences are usually used as spreading functions 
for modulating a sinusoidal carrier. Since the performance of SS systems is primarily 
determined by the spreading, many new spreading techniques based on dynamical 
chaos have been intensively studied in last decade [4], [5]. 

Active research in this area was initiated by Pecora and Carroll [6] who first 
demonstrated the robust synchronization of one chaotic oscillator by another. Sev- 
eral different schemes implementing communication using chaos have been proposed 
in the recent years. Some of them, such as the differential chaos shift keying (DCSK) 
[7], do not use the phenomenon of chaotic synchronization and rely on transmit- 
ting the chaotic reference signal along with the modulated signal. In other schemes 
(chaotic masking [8], inverse systems [9], parameter modulation [10], and generalized 
frequency modulation [11]) synchronization has been used. However, as subsequent 
research has shown [12], many of these methods are susceptible to channel distortions 
and typically yield poor bit error rate (BER) performance. A better BER charac- 
teristic can be achieved with DCSK and It can be further improved by employing 
methods of Symbolic Dynamics (SD-DCSK) [13]. 

Studies of the communication systems with chaotic carriers show that most of 
these systems are highly susceptible to channel distortions: additive channel noise, 
amplitude and frequency distortions can easily desynchronize the chaotic oscillators 
[14]. In order to eliminate the influence of channel distortions on the quality of 
chaotic synchronization it was suggested to use chaos for modulation of the temporal 
characteristics of carrier signal- the Chaotic Pulse Position Modulation (CPPM) 
[15]. This scheme has good BER performance, the transmitted power can occupy an 
Ultra Wide frequency Band (UWB) with pulse coding and matched filters used to 
separate users in multiuser environment. 

Chaotic waveforms can also be used in place of PN sequences as spreading func- 
tions in Direct Sequence (DS) and Frequency Hopping (FH) SS systems. Chaotic 
sequences for DS SS have been intensively studied in the last few years [16]. It has 
been shown that chaotic spreading sequences optimized with respect to the Multiple 
Access Interference (MAI) power can also improve the BER performance and allow 
about 15% more users in asynchronous CDMA systems than Gold Codes [17], [18]. 
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In FH SS systems the hopping sequences are usually optimized for better Hamming 
correlation properties to ensure small user-to-user interference. Analysis of spread- 
ing sequenced for FH SS generated by the chaotic 1-d maps shows that the chaotic 
sequences have as good correlation properties as PN sequences [19]. 

The rest of the paper is organized as follows: in Section 3.2 we describe the 
synchronization algorithm and modulation-demodulation schemes for the communi- 
cation system with frequency and phase modulation of a chaotic carrier, in section 
3.3 we present the general synchronization scheme for a communication system with 
Chaotic Frequency Modulation (CFM) of periodic oscillators, section 3.4 is devoted 
to the performance characteristics of the CFM system with different types of mod- 
ulation, and the conclusions are in section 3.5. 

3.2 Phase and Frequency Modulation of Chaotic Carrier 

3.2.1 X- and r-loop synchronization scheme 

Frequency modulation (FM) is widely used in communication (FM radio, TV, 
radars, etc.) because it is relatively simple and has some spread spectrum capa- 
bilities, especially broad band FM. Because of the advantages of FM during the last 
decade several attempts have been made to use it with chaotic signals [11], [20], [21]. 
Although the modulation in many cases can be easily realized by variation of the 
time scale parameter of the chaotic system in accordance to the information signal, 
to retrieve the information the receiver needs to keep tracking the changes of the 
received signal spectra, which is much more complicated task. In conventional FM 
systems Phase Locked Loops (PLL) are commonly used as a simple and efficient FM 
demodulator [see, for example [22]]. In a PLL FM demodulator circuit, the Local 
Oscillator (LO) frequency is controlled by the loop signal in such a way that it is 
equal to the frequency of the input (received) signal and the oscillators are phase- 
locked. Thus, when the modulation is apphed to the transmitted signal, the loop 
signal follows the modulating signal. 

To exploit the idea of phase lock-in for the chaotic systems: 

Xtr = rtrF{xtT,Ptr) Xre = rreF{Xre,Pre), (3-1) 

where we use lower "ir" and "re" indexes for transmitter and receiver systems 
correspondingly, astr.re represent the phase variables of the chaotic systems, rtr,re 
are the time scale parameters and ptr.re are parameters essential for the systems 
dynamics, a feed-back loop can be used to control the parameter Tre in the receiver 
system in order to keep a constant time shift between the oscillations (r-loop). If 
the trajectories are identical in the phase spaces, the time shift between them can 
be determined as a difference in time moments when the trajectories pass through 
the identical Poincare cross sections Ar and Pre- Then the r-loop can use this 
information about the time shift to control the time scale parameter in the receiver 
to keep the trajectories in-step with each other. To keep the chaotic trajectories 
identical in their respective phase spaces another feedback loop (x-loop) can control 
the parameters pre of the receiver system using the error signals detected on Ftr 
and Pre- The block diagram of the control scheme is shown in Fig. 3.1. Although 
one of the most general methods of such control is based on Ott, Grebogi, Yorke 
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Fig. 3.1. Block-diagram of the chaotic PLL synchronization scheme. Chtr,re are 
chaotic oscillators; DT is the time shift detector; Dx is the phase space shift de- 
tector; CT and Cx axe the controller devices for modulation parameters r and p 
correspondingly. 

"controHing chaos" (OGY) [23], [24], the Adaptive Parametric Control (AFC) [25] is 
much more simple and practical. We assume that in the x-loop only the information 
about the space coordinates (in regardless of the time) is used by the controller 
to modify only one the receiver parameters pre- In this case the x-loop operates 
independently from the r-loop and if the control method is stable the trajectories 
converge to each other in space and become identical: \xtr{n) — Xre{n)\ —> 0, where 
xtr,re(n) are trajectories on itr and Pre- When the trajectories are identical in phase 
spaces but shifted in time the r-loop performs similar to a PLL with stable periodic 
oscillators and can synchronize the systems in time. The control equation for the 
r-loop can be written as: 

Arin) = AT{0) - 4> iAt{n)), (3.2) 

where: AT{n) = Tre(n) — Tfr is the current detuning of the time scale parameters; 
At(n) = trein) — ttr{n) is the time shift between the oscillations; <p(At) is the 
characteristic of phase discriminator. We assume it is a smooth function in some 
interval At 6 [Atmin, Atmax]- 
The time intervals between two intersections of Jir and Pre surfaces ttr{n)—ttrin—l) 
and <re(n) — Uein — 1) are functions of phase coordinatees and systems parameters: 

ttr{n) -ttr{n- 1) = TtrT {xtr{n - l),ptT) 
tr„{n) - tre(n - 1) = Tre(n - l)T(Xre(n - l),Pre(n - 1)) . 

Using equations (3.2) and (3.3) one can write the following linearized evolution 
equation for the time shift At{n): 

(3.3) 

Atin) = At{n - 1) -|-T(xtr(n - l),ptr) [^-r(O)- 

(P{At{n - 1))) + Ttr (T^AX + T;AP\ 

(3.4) 

where   \Xtr - X^el   «   1; \Pre - Ptr\   «   h      T^^AX  =   f)   ^{x'^eijl - 1) - 
fc=l '^ 

Kjv(n - 1));     T^AP = E ^iPre{n - 1) - Pi); m and ml are the numbers of 
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coordinates and parameters correspondingly. As it has been mentioned above the 
time scale parameter does not have an effect on the system dynamics so the x-loop 
performs independently from the r-loop. Suppose that the x-loop is designed to be 
stable in accordance with one of known methods of controlling chaos and converges 
under n ^ oo to ire = xtr and Pre = Ptr that leads to vanishing AX and AP 
in (3.4). The evolution equation for the time shift between the oscillations (3.4) 
therefore has the stationary solution: 

At' = <f>~^ (AT{0)) = const. (3.5) 

The solution (3.5) corresponds to synchronous oscillations of the chaotic systems 
(3.1). This regime is stable (provided that the x-loop is stable) if: 

-r(x..(n-l),p..)^ < 1, (3.6) 

Af 

Equations (3.4—3.6) describe the dynamics of the r-loop, which is similar to the 
dynamics of PLL with periodic signals (for periodic oscillations T{x,p) = const). In 
particular, the main properties of the synchronous regime (3.5) are the same: (i) the 
synchronous regime exists in a certain interval of initial detunings (j)min < AT{0) < 
^max, where ^min and <j>max are the maximum and minimum output signals of the 
time shift detector Z?r, and (ii) the residual time shift At' in the synchronous regime 
is determined by the initial detuning AT{0). By analogy with a PLL, the x - r loop 
can be used in communication systems as a demodulator of frequency modulated 
signals. Modulation of the time scale parameter Ttr by the information signal leads 
to the frequency modulation of the broadband spectra of the chaotic signal in the 
transmitter, which corresponds to the modulation of AT{0) in (3.4—3.6). In the 
synchronous regime (3.5) the output of the time shift detector Dr is a function of 
Z\T(0) and therefore the information can be recovered. 

3.2.2 Demodulation of phase- and frequency-modulated chaotic 
carriers 

A communication scheme based on phase and frequency modulation of chaotic car- 
rier signals has been described in [21], where ring oscillators [26] were used as chaotic 
systems. The mathematical model for a single oscillator (see [27] for circuit imple- 
mentation ) is the following: 

Tx = y 
ry = -x-Sy + z ,^js 
TZ = 7(-F(a;) - z) —ay 

f 0.528, X < 1.2 
where: Fix) = I ax{l - aj"),    -1.2 < a: < 1.2 

I -0.528, X > 1.2 

and r is the time scale parameter. 
The system (3.7) demonstrates a variety of chaotic behavior. The synchronization 
algorithm has been tested on two types of attractors shown in Fig. 3.2 (a, b). 
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Fig. 3.2. Asymmetric (a) and symmetric (b) chaotic attractors of the system (3.7) 

The time shift detector in the r-Ioop measured the difference between time mo- 
ments ttr{n) when the trajectory of the transmitter system crosses the Poincare 
surface Ftr and the time moments tre(n) corresponding to the receiver system 
trajectory crossing the Pre- In this case the time shift detector output function 
<j>{At) is proportional to At inside the interval At € [0, imin], where tmin == 
mm{ttr{n) - ttr{n - 1), *r=(n) - tre(n - 1)}, n = 1,2,3,... . Outside this in- 
terval <i>{At) = <j){At,n) is chaotic. The adaptive parametric control [25] was used 
in the x-loop for synchronization of the trajectories in the phase spaces. The trans- 
mitter chaotic oscillator was used as the SYS TEM in [25]; the receiver oscillator- 
as the MODEL. Parameters of the MODEL were controlled instead of the SYSTEM 
ones. It was assumed that only the xtr variable is available for the receiver. The 
planes xtr = 0 and ire = 0 were used as the Poincare cross sections. Parameter 7re 
was used as the control parameter. Perturbations were made in accordance with the 
equation: 

7r=(n -I- 1) = Jrein) + fJ,\Xrein) - Xtr(n)j (3.8) 

where: fj. is the constant parameter of the adaptive control. Since the adaptive 
parametric control requires coupling between the MODEL and the SYSTEM , the 
Xre variable was adjusted after calculating 7re(n + 1) so that Xre(n) = xtr(n). 

The stability and robustness of synchronization has been studied in computer 
simulations. In-phase synchronization of chaotic oscillations corresponding to the 
attractors (Fig. 3.2a) is illustrated in Fig. 3.3a, b. In simulations shown in Fig. 3.3a 
both parameters Trs and 7re were detuned at the starting point t = 0. The available 
ranges for the control parameters were set to the following: 

0.5 < Tre < 1.5 0.09 < 7re < 0.11 

At the time moment t = 500 the control was turned on and the systems converged 
to the stationary synchronous regime. In spite of the constant time shift At the 
oscillations are synchronous and the values of the parameters in the transmitter and 
the receiver systems are equal: Ttr = Tre and ytr = 7re. 

In practice however, some parameters could be inaccessible for the control and, 
if these parameters are not identical, the stationary solution (3.5) does not exist. 
However, if the parameters mismatch is small enough the systems oscillate near the 
synchronous regime and the jitter, i.e. the deviation from synchrony, depends on the 
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Fig. 3.3. (a)- The normalized time shift between the oscillations At = ^t^^ and 
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The influence of mismatch of parameters atr.re on the amphtude of fluctuations 
of the time shift At in the synchronous regime: 6tr — Sre = 0.43, atr = Cre = 
0.72, 7tr = 0.1, 7re(0) = 0.11, Ore = 16, and atr=16 — (1); 16.7 — (2); 16.9 

-(3) 

amount of mismatch. Fig. 3.3b shows the transient for the case with uncontrolled 
parameter Ore ^ oitr, while parameters 7re and Tre were controlled. When the 
detuning \are-Oitr\ increases, the amplitude of fluctuations becomes more significant 
and at some level of detuning synchronization can be lost. 

As was mentioned above, the modulation of the time scale parameter T is analo- 
gous to frequency modulation and can be detected by the r-loop in accordance with 
Eq. (3.5). The characteristic time of the demodulator depends on the convergence 
speed of the control scheme and can be quite fast (see Fig. 3.3). A similar control 
scheme can demodulate a Binary Phase Shift Key-in (BPSK) modulated chaotic 
carrier signal i.e. the chaotic signal xtrit) multiplied by -|-1 or -1 depending on the 
binary information signal content. As shown in Fig. 3.4, the detectors DT and Dx 
receive the absolute value or square of the input signals |a;tr| and |a;re|. Since xtr = 0 

Transmitter 

CH„ 

Modulation 

Ixl 

Receiver 
T-Ioop 

1x1 

X-loop 

CH„ 

Fig. 3.4. Block-diagram of the chaotic PLL synchronization scheme for BPSK mod- 
ulated chaotic carrier signals. 
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and Xre = 0 surfaces were taken as Poincare cross sections the r-loop was equivalent 
to that shown in Fig. 3.1, whereas the control equation for the x-loop (3.8) was 
changed in order to provide an appropriate direction of the parameter variation: 

7„(n+ 1) =7re(n) +/X sign(xre{n)ji |a;re(n)| - |a;tr(n)| j 

As it is easy to see this control scheme is invariant with respect to the substitution 
x^^ -4 -xtr and can be used for in-phase and anti-phase synchronization. Since 
switchings of the input signal Xtr -^ -Xtr do not destroy the synchronization, this 
scheme can be used for demodulation of BPSK signals. Fig. 3.5 shows signals in the 
transmitter and the receiver with BPSK modulation of the transmitted signal. The 

Z 1 " 

^0 1 1 1 

5650                    5700 5750 5800 

    Transmitter - Receiver 

2r 

§' M m i M M r w pfti w i tC 
"5660                     57D0 5750 5800 

TIME 
Fig. 3.5. Demodulation of BPSK chaotic signal. 

graphs in Fig. 3.5 were plotted for parameters of the systems corresponding to the 
attractors shown in Fig. 3.2(b). In accordance with some binary message the key-in 
modulation: Xtr -+ -xtr was applied to the transmitted signal Xfr{t) at the time 
moments when Sfr = 0. Since the phase of oscillations in the receiver is not effected 
by the modulation, the message can be recovered by correlating the signals xtr and 

3.3 Chaotic Frequency Modulation of Periodic Carrier 

3.3.1 Interpolated Frequency Hopping and Chaotic Frequency 
Modulation 

Frequency hopping is one of the most efficient methods of spreading spectrum. In a 
typical scheme with non-coherent frequency hopping, the transmitter carrier signal 
frequency is modulated by a pseudo-random hopping code. It is assumed that the 
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transmitter and the receiver share the same code and are synchronized (usually by 
exchanging special synchronizing codes). Then the frequency of the transmitter is 
shifted by the information signal and the receiver can extract the data by detecting 
this relative frequency shift. In coherent FH systems, the receiver and transmitter 
maintain exact phase synchronization of the carrier, a,nd the information is encoded 
in the phase variations of the transmitted signal at a current carrier frequency. 

If the receiver is able to provide and maintain the exact carrier phase for de- 
modulation (which is difficult because of discrete frequency hops), diflferential phase 
encoding can be used. Alternatively, as in the DCSK scheme [7], the first part of 
a time slot assigned for each binary symbol serves as a phase reference, and the 
subsequent part within the same slot is phase shifted with respect to it according to 
the information bit. In this method the carrier frequency is modulated by a chosen 
chaotic signal to spread the spectrum. It should be noted that this method does 
not exploit specific deterministic features of the chaotic signals. Indeed, frequency- 
modulating signal does not have to be chaotic - any random or pseudo-random signal 
(as in conventional differentially coherent modulation techniques) would do as well. 

FH and especially fast discrete frequency hopping, with at least several hops per 
information bit, provides a high level of redundancy and therefore high resistance 
against interference and fading. It is known however that FH systems have two 
main problems: spectra splatter and transient mismatch between the transmit and 
receive synthesizers. Besides the common solutions used to reduce these effects, 
such as voltage controlled oscillator (VCO) pretuning, swapping ("ping-ponging") 
multiple synthesizers, and transient hop interval dwell and guard times ( see [28] 
and references), the alternative "Interpolated Frequency Hopping" (IFH) technique 
was recently proposed in [28]. The hopping code in IFH-transceiver is interpolated 
by the digital filter, so insteaxl of abrupt hops, frequency varies smoothly in time, 
which results in better synchronization and therefore lower BER. 

Analog chaotic oscillators provide a natural way of generating signals with 
smoothly varying Chaotic Frequency Modulation (CFM). An additional benefit of 
employing analog chaotic oscillators is that they may exhibit self-synchronization, 
thus eliminating the need for special synchronizing sequences. A traditional way 
of using frequency modulation consists of modulating the transmitter VCO by the 
signal from the chaos generator, and demodulating this signal at the receiver before 
feeding it into the receiver's chaos generator (see Figure 3.6). In many systems de- 

Fig. 3.6. Traditional PLL based FM communication scheme. 



68 Volkovskii, et al. 

modulation of FM signals is performed using a PLL [29]. The gain of the PLL must 
be chosen large enough to provide frequency variation of VCOrc within the entire 
frequency range of the transmitted signal. The problem with this approach is that 
any interfering signal with frequency close enough to the current carrier frequency 
of the transmitted signal, will cause a large perturbation of the frequency of the 
receiver VCO. This may cause an instability and de-synchronization of the PLL. 

3.3.2 PLL-based Synchronization scheme for CFM signals 

In [30] it was proposed to use a different chaotic FM communication scheme based 
on including the phase lock loop and the chaotic generator in the feedback loop of 

■the receiver VCO. It was shown that stable synchronization can be achieved for a 
certain class of chaotic FM systems and the synchronous regime is much more robust 
against additive disturbances in the channel than a simple FM scheme Figure 3.6. 
It has also been demonstrated that within this scheme, a binary information signal 
can be transmitted via phase or frequency modulation with coherent or non-coherent 
detection at the receiver. 

The block diagram of the proposed synchronization scheme is shown in Fig. 3.7. 
In the transmitter, one of the state variables xtr{t) of the chaotic oscillator (CHtr) 

TRANSMITTER 

Xtr 

Fig. 3.7. PLL-based Synchronization scheme for CFM signals. 

is used for the frequency modulation of the voltage controlled oscillator (VCOtr) to 
get a spread spectrum CFM signal. The receiver consists of the chaotic oscillator 
CHre, voltage-controlled oscillator VCOrc, phase discriminator (®), low pass filter 
(LPF) and the adder (AD). The chaotic oscillators CHtr.re and voltage controlled 
oscillators VCOtr.rc are assumed to be identical. The sum of the state variable Xrit) 
and the output signal from the LPF u{t) modulates the frequency of VCOre. When 
the state variables xtr{t) and Xre{t) are close to each other, the phase lock loop ( 
® -y LPF -)■ AD -+ VCOre) locks on the current frequency of the transmitted signal. 
In this regime the LPF output voltage u is proportional to the open loop frequency 
offset and therefore to the difference xtr{t) - Xre{t). The LPF output u feeds the 
CHre, providing uni-directional dissipative coupling between the chaotic oscillators 
in the transmitter and in the receiver. This coupling leads to chaotic synchronization. 
When the chaotic oscillators are synchronized and the voltage controlled oscillators 
are phase-locked, switching the phase or modulating the frequency of the CFM signal 
can be used for information transmission (see Section 3.4 below). 
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For the analysis of the proposed scheme suppose that Xtr{t) and Xreit) are 
normalized state variables: max|a;tr(i)| = max|xT-e(t)| = 1- The VCO frequencies 
are modulated by the chaotic signals: 

iptr = UJtr = U}o{l — miXtr) /g Q\ 

(fre = Wre = Wo(l — TTllXre — m2u{t)) 

where wo is the "natural" frequency of VCO, mi and m.2 are the modulation gain co- 
efficients, u{t) is the LPF output signal normalized by the maximum output voltage 
of phase discriminator: \u{t)\ < 1. 

Denote ip = ipre — ftr and consider the first-order low pass filter with the transfer 
function K{s) = 1/{1+Ts). Then the equations for PLL can be written in the form: 

if = U>omi{Xir{t) - Xreit)) - UJom2U . , 
Tu = <f>{<p)-u ^'^■^^> 

where the function 4>{fi) is the normalized characteristic of the phase discriminator 
(max((^(i^)) = 1). If a multiplier is used as a phase discriminator, (t){ip) = sisup. 

The chaotic systems in the transmitter and the receiver can be described by the 
following equations: 

TchXtr ^^ J\Xtrt'^tr) TchXre ^^ jyXre) *Cre) ~T ^"U /q -i-i \ 
Tch'^tr ^^^ -^ \Xtri'^tr)        Tch*^rc ^ •»* \Xrei^re.} 

where: 
xtr, Xre are the state variables used for frequency modulation; 
Xtr, Xre are the vectors of other variables; 
/ and F are nonlineax functions ; 
Teh is a characteristic time of chaotic oscillations; 
e is a coupling parameter. 

Combining (3.10) and (3.11) and changing time to a dimensionless form: r = 
ty/(jJom2/T, one can derive the following set of equations for both transmitter and 
receiver: 

Xtr = af{xtr,Xtr), 
Xtr = OlF{xtr,Xtr), 

Xre = Oi[j[Xre:Xre) 'T €V')j /q •tn\ 
Xre ^^ 0^** \XretXre)j 
X(p = /3{xtrit) - Xre{t)) - U, 
iil = ^(ip) - U, 

where:   
a = {■\/T/(j}oin2)/Tch = Tpu/Teh is the relative speed of chaotic frequency modula- 
tion; 
P = mi/m2 is the relative depth of frequency modulation; 
A = l/VaJom2T is the PLL damping parameter. 

If the modulation is slow: a<^\, the dynamics of the system (3.12) can be separated 
into fast and slow motions. The phase lock loop dynamics (last two equations of 
(3.12)) is fast, and the dynamics of chaotic generators is slow. So, starting from 
arbitrary initial condition, the system first approaches the manifold of slow motions 
in which the PLL dynamics is slaved by the dynamics of the chaotic oscillators (see 
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X -0.01- 

Fig. 3.8. Phase portrait of the system (3.12) for a<l. S indicates planes of fast 
locking of the phase-lock loop, and line | shows a slow synchronization of the chaotic 
generators; O indicates the steady state of the system (3.12), which corresponds to 
synchronization of both CHtr.re and VCOtr.re. 

Figure 3.8). On the slow motion manifold, one can neglect the time derivatives tp 
and w, so u = PixUt) - Xr.it), ^ = 4>~\y)- Then the remaining equations read 

XtT = Olf{Xtr,Xtr), 
Xtr = aF{xtr,Xtr), 
Xrc = a{f{Xre, Xrc) + £/3(Xtr{t) - Xreit))) 
Xre = 0:F{Xre,3:re)- 

(3.13) 

This system describes the dynamics of two dissipatively coupled chaotic oscillators. 
If the subsystem x = F{x, x) is stable (as determined by the conditional Lyapunov 
exponents [6]), then for laxge enough coupling strength e, system (3.13) exhibits sta- 
ble synchronization (xtAt) - Xre{t) -^ 0, XtAt) - Xre{t) -^ 0 as t -^ oo for (almost) 
any initial conditions (see, for example, [31, 32, 33, 34]). Thus in the Umit a < 1 the 
problem of synchronization of the CFM system is reduced to the synchronization of 
the low-frequency chaotic oscillators CHtr.re. However, if parameter a is of the order 
of 1, the dynamics of the full system (3.12) is more complicated and synchronization 

may not occur. 
Frequencies of the VCOtr,r= change within the range AQ = rmm around the 

central frequency wo. However, in the neighborhood of the synchronized state, the 
frequency of the VCOre is close to that of VCOtr, and therefore the bandwidth of 
the LPF can be made small compared to the bandwidth of the chaotically modulated 
carrier AO (or, equivalent^, T » (miwo)-^)- In fact, the signal which should pass 
through the filter, u, has the bandwidth of the low-frequency chaotic oscillators 
CHtrr=, and so the bandwidth of LPF should be determined by the bandwidth of 
the chaotic oscillator itself { T < Teh)- This provides selectivity of the proposed 
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scheme with respect to in-band interference, since signals with frequencies not close 
to the current transmitter frequency, are effectively filtered out by the low-pass 
filter in PLL. Only during short intervals when frequencies of the carrier and the 
interference are sufficiently close, is the PLL disturbed by the latter, and some 
deviation from the synchronized state occurs. Unlike the simple FM modulation 
scheme (Figure 3.6), the gain of the phase lock loop m2 can be made much smaller 
than mi, and therefore even large in-band interference is significantly attenuated in 
the PLL and does not destroy synchronization. 

3.3.3 Numericcd simulations of the synchronization scheme 

We performed numerical simulations of the sjmchronization scheme shown in Fig. 3.7 
for two third-order chaotic systems described earUer [33], with x = y,z, and 

f{x,y,z)= y, 

F(xvz) = l      -^-Sy + z,      ] (3.14) 

The parameters of the systems are 5 = 0.43, M = 24.7, a = 0.72, 7 = 0.1, and 

{x(l-aj^), at -1.2<a;< 1.2, 
0.528, at a; < -1.2, (3.15) 
-0.528, at a; > 1.2, 

The phase discriminator function was chosen <j>{<p) = sin(^). We indeed found a large 
parameter region for a stable synchronized operation of the CFM system. Fig. 3.9 (a) 
shows the region of lock-in (convergence from any arbitrary initial conditions to the 
synchronous state) on the parameter plane (A, e) for yS = 5 and two difiFerent values 
of a. For small a = 0.01, the lock-in occurs for e > 0.15 except for very small 
A. For larger a = 0.1, the lock-in region shrinks. It is important to emphasize 
that this synchronization scheme is robust against small detunings of parameters. 
We investigated the influence of the parameter mismatch between transmitter and 
receiver chaos generators on the quality of synchronization. We varied parameter 
7re in (3.14) of the receiver while keeping jtr = 0.1 at the transmitter. Fig. 3.9 (b) 
shows RMS values of the difference xtr(i) -Xre{t) and the VCO frequency difference 
u}re{i)-utr{t) as functions of the parameter mismatch A = (7re-7*r)/7tr. For small 
values of the mismatch, the difference Xtr{t) — Xreit) is small, and the PLL is able 
to adjust the frequency of VCOre to keep exact synchronization {ure = <^tr)- At 
larger values of id > 6%, the PLL is unable to maintain synchronization, since the 
open-loop PLL frequency detuning miU!o\xtT{t) — Xre{t)\ occasionally exceeds the 
PLL hold range m2Wo- 

The robustness of the proposed method against the periodic in-band interfer- 
ence signal has been studied by adding a sinusoidal component at the frequency 
wi within the CFM range to the transmitted signal. The amplitude of the interfer- 
ence component was 20% of the amplitude of the transmitted signal. The results of 
the simulations are shown in Fig. 3.10. Small splashes of the PLL output signal u 
(Fig. 3.10 (a)) are produced when the frequency of the transmitted signal is close 
to wi. Nevertheless, since m2 < mi, frequency of VCOr remains close to VCOt, 
and the system does not lose synchronization. In contrast, similar interference in 
the conventional FM scheme (Fig. 3.10 (b)) produced large perturbations of the 
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Fig. 3.9. (a)- Region of stable CFM synciironization in the parameter plane (A, e) 
for system (3.12), (3.14), (3.15) for (3 = 5; (b)- RMS values of xtr{t) - Xre{t) 
(squares) and uJtr{t) - tJreit) (circles) as functions of the parameter mismatch A — 
(7re - ltr)htr 
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Fig. 3.10. (a)- CFM synchronization in the presence of in-band interference. Dashed 
line in the top panel indicates the frequency of the interference signal wi =23; (b)- 
Synchronization of chaotic oscillators via standard FM Unk in the presence of in- 
band interference at the frequency wi =23. 

frequency of VCOre and loss of synchronization. In this scheme, the receiver PLL 
must have much larger gain mi in order to vary the frequency of VCOre within 
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the range of the transmitter operation. Therefore, in the standard FM scheme all 
in-band interference signals directly affect the chaotic oscillator at the receiver. 

3.4 Communication using CFM signals 

3.4.1 Differential BPSK modulation 

The proposed method of synchronization of CFM oscillators can be readily utilized 
for information transmission. Indeed, since the PLL provides phase synchronization 
between the transmitter and the receiver, differential binary phase shift keying mod- 
ulation at the transmitter can be easily detected at the receiver. In order to maintain 
synchronization irrespective to phase switching, the phase lock loop must operate 
at the second harmonic of the carrier signal, so a multiplier and a high-pass filter 
should be added to the scheme (see Fig. 3.11). An example of the binary information 

Fig. 3.11. Block diagram CFM DBPSK communication scheme. 

transmission using this system, is shown in Fig. 3.12. After initial transient, phase 
switching is readily detected at the receiver without any loss of synchronization. 
Since the receiver in this scheme can be synchronized in both in-phase and anti- 
phase mode, an initialization procedure is required to remove the ambiguity in the 
decoded information. 
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Fig. 3.12. Digital communication using BPSK in conjunction with CFM: upper 
panel- frequencies of transmitter and receiver VCOs, lower panel- phase variation 
at the transmitter (dashed line) and the signal detected in the receiver (solid line). 

3.4.2 Binary frequency shift key-in modulation 

In traditional FH systems the frequency of carrier signal is modulated by a discrete 
time PN spreading code. In this situation, when the carrier frequency is hopping 
from one value to another, it is very difficult to keep signals phase-locked in order to 
use phase modulation and less efficient BFSK modulation is usually used instead. 
Although a smooth frequency variation in CFM signals allows the coherent detection 
as it was shown above, the BFSK can be used with CFM as a more simple and cost 
eflfective solution. 

The block-diagram of a CFM BFSK communication scheme is shown in Fig. 3.13. 
The same PLL circuit as shown in Fig. 3.7 is used as a receiver. The transmitter 
is similar to shown in Fig. 3.7, but the analog or binary data signal modulates the 
VCOtr frequency in addition to Xtr(t)- At the same time the information signal is 
applied to the CHtr- The VCOtr generates a CFM signal with the frequency: 

Wtr = •Ptr = l^o(i + miXtrit) + m2bi) (3.16) 

where: wo is the VCOtr's free running frequency; mi and m? are the modulation 
parameters; bi is the information signal. 

The information is encoded as a frequency deviation from the original CFM 
signal. To ensure the regime of identical synchronization between the transmitter 
and the receiver, the information signal 6j should be appHed to the CHtr in the 
same way as the detected signal u{t) is applied to the CHre- In this case, despite 
of the changes in the CH's dynamics caused by bt and u{t), both CHs can oscillate 



3 Chaotic Frequency Modulation 75 

TRANSMITTER 

Xtr 

Fig. 3.13. Block diagram of CFM BFSK communication scheme 

synchronously. We assume that the amplitude of the information signal is small 
enough to keep the CHs in the chaotic regime. In the receiver the phase discriminator 
(PD) generates a signal, which is a function of the phase difference between received 
and local CFM signals. The local CFM signal frequency is: 

Wre = 'pre. = U;o(l + miXre{t) + TO2«) (3.17) 

The local VCO, PD and the low pass filter (LPF) make a phase locked loop, which 
tends to synchronize the local VCO to the transmitter. Assuming that the PD is a 
multiplier and the VCOs generate sinusoidal waveforms, the PD output is As\n{^), 
where tp is the phase difference between the PD input signals tp = iptr - <PT^- We 
consider a LPF with the transfer function in the form K{s) = 1/(1 + Tfs). In this 
case the joint dynamics of the transmitter and the receiver can be described by the 
following equations: 

pF(xfr + e6i;xtr) (3.18) 

Xre = /jF{Xre + eu;Xre) 

If = {0{Xtr - Xre) + h - u)/\ 

u = A(sin(v?) — u) 

(3.19) 

where F is the vector function of the state variables Xre.tr = {iCre.tr; Xre.tr} € R (d 
is the dimension of CHs) that represents CH dynamics in receiver and transmitter, 
XTe,tr are scalar components through which the CHs are coupled, Xre.tr € K ~ 
represent remaining d— 1 components of the state vectors, e is a coupUng parameter, 
u is the LPF output voltage; n controls the characteristic time scale of the CHs; 
/3 = mi/m2 is the relative modulation depth; A = l/^ArriiUJoTf is the PLL damping 

parameter. The time in (3.18, 3.19) is normahzed by ^/TfjAm^ and the phase 
variables {a;tr,re,xtr,re,'"} and hi by A. 

The set of equations (3.18, 3.19)has a synchronous solution: 

Xre(t) = Xtr(t),    u = bi,    <p = arcsin(M), (3.20) 

which corresponds to the regime with identical synchronization between the CHs 
and constant phase shift between the VCOs. In this regime the information signal 



76 Volkovskii, et al. 

bi can be decoded by measuring the PLL output voltage u. In order to demonstrate 
that the synchronous regime is stable we assume that fj, « 1. In this case the 
equations (3.18, 3.19) can be split into fast (the PLL, described by (p and u) and 
slow ( the CHs, described by Xtr and Xre) subsystems. The fast subsystem for 
which Xtr, Xre, fcj can be considered constant, has an equilibrium state: 

= /3{xtr - Xre) + bi,    <p = (fi, = arcsin(us). (3.21) 

This solution exists and stable ii/3{xtr-Xre) + bi < 1. As soon as the fast subsystem 
converges to steady state {u3,(ps), the CHs become dissipatively coupled. It has been 
shown in many examples that the dissipative coupling can provide stable synchro- 
nization of chaotic systems (see, for example, [34]). Assuming that the conditions 
for the CHs synchronization are satisfied, we conclude that the synchronous regime 
(3.18, 3.19) exists and is stable. In this regime u = bi and, therefore, the transmit- 
ted information can be detected in the receiver. This communication system can use 
binary or analog information signals bi. 

The modulation scheme was tested in computer simulations. For the chaotic 
oscillators we we used the Rossler oscillators of the form: 

Xl = H{—X2 — X3 — d) 
X2 = fJ,{2.25xi + 0.15a;2) 
X3 = fi{OM + 5x3 (a;i - 2)) 

(3.22) 

with Xt,r = Xl and d = bi in the transmitter and d = u in the receiver. The 
parameters were set as following: n = 0.05, Wo = 40, mi = 0.01, m2 = 0.2, and 
Bi = ±0.4. 
The results of numerical simulations are presented in Fig. 3.14, which shows the 
waveforms of the CHre output, errors of chaos synchronization and decoded binary 
signal given by random sequence of bits. 

-5 
, 0.01 

'-0.01 
.   0.5 

-0.5 

^ r i: 
^ 

1000     1500    2000    2500    3000    3500    4000    4500     5000 
Time 

Fig. 3.14. The simulated waveforms for the system (3.18, 3.19) with random binary 
information signal bi 
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3.4.3 Multi-user CFM communication system 

As it was shown above, the CFM signals with phase or frequency modulation can be 
used for information transmission. In order to characterize the efficiency of a com- 
munication system the BER performance of the scheme in the presence of different 
kind of interferences should be evaluated. In this section we present the BER charac- 
teristics of CFM systems with additive channel noise and propose a multiple access 
technique based on the synchronization of chaotic oscillators in different users. 

To describe the application of the CFM method for multi-user communications 
we propose the following general multi-user communication scheme (Fig. 3.15). The 
base station (BS) and all the mobile units (MU) have the chaos generators (CH) 
with closely matched parameter values. The base station uses its CH to generate 
a CFM signal which it broadcasts to all the mobile units. Each MU receives this 
signal, and uses it for synchronization of its CH to the BS chaos generator. Once 
all chaos generators in the cell are synchronized, unit i can transmit information 
to unit it or to the BS using the chaotic waveform to generate its own information- 
bearing CFM signal. In order to minimize user-to-user interference, each transmitter 
changes the chaotic waveform, which are synchronized and therefore identical in all 
users, by applying its own unique transformation /i to the chaotic waveform before 
generating its CFM carrier. The channel in which the mobile units are transmitting 
the CFM signals should be separated from the "synchronization" channel, in which 
the base station is transmitting the reference CFM signal, to avoid interference with 
the synchronization signal. Let us consider first the "synchronization channel". In 

MU| MUk 

•    •    • 

Fig. 3.15. Block diagram of the multi-user CFM 
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the following, we will denote the variables and acronyms corresponding to the base 
station by subscript b, and the ones corresponding to the mobile units, by subscript 
u. The chaos generator of the base station CHt is described by the following equation 

TXb = F{xb), (3.23) 

where x is the vector of state variables of CHb; F is the nonlinear vector field 
function; and T denotes the characteristic time constant of the chaos generator. One 
of the variables of the chaotic system at the base station, Xf,, is used to control the 
frequency of the VCOb producing the reference CFM signal. The equation for the 
instantaneous phase of the reference CFM signal reads: 

ipb=ujb = wo(l - mxb), (3.24) 

where wo is the "natural" frequency of VCOb, and m is the modulation gain coef- 
ficient. The instantaneous phase of the CFM signal generated by the VCO„, (pu, is 
described by a similar equation: 

'   (pu=uJu=<^oil-mXu-rhv), (3.25) 

where v is the phase-lock loop output signal, m is the VCO sensitivity and Xu{t) is 
the chaotic signal generated by the CHu. The latter is described by the equation: 

TXu = F{xu) + av. (3.26) 

This chaos generator is driven by the PLL output signal v, a determines the coupling 
strength. The PLL is a combination of phase discriminator (®), LPF and VCO (see 
Fig. 3.15). For the first order LPF K{s) = 1/(1 -t- Ts) the equation for the PLL can 
be written as follows: 

Tv = ${<pu - fb) - V, (3.27) 

where ^{x) = sin(a;) if the phase detector is implemented using a multipher and the 
carriers have sinusoidal waveforms. 

We assume that the frequency range of the information transmission does not 
overlap with the frequency range of the synchronization signal, so the information- 
bearing signals do not interfere with the synchronization signal. In this case the 
analysis of the synchronization process between the base station and the mobile units 
is equivalent to the one made in section 3.3.2. If the characteristic time constant r of 
the chaos generators is much greater than ^{T/{rhojo), then there exist a range of 
parameters T, m, m,wo,a, in which the synchronized solution of Eqs. (3.23)-(3.27) 

(3.28) 
aJu = Xb, 

<Pu = <Pb, 

V = 0, 

is globally stable. 
Now let us turn to the information transmission among the mobile units. Once 

CHs of the mobile units are synchronized to the CHt of the base station, the mobile 
units can use the CFM signal for information transmission. If the frequency of the 
CFM signal transmitted by the i-th mobile unit (transmitter) is modulated by the 
binary information signal (BFSK), it can be described by the following equation, 

u}i = 'Pi=wi{l + mifi{xi)+m2Vl), i=l,...,N. (3.29) 
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Here N is the total number of transmitting mobile units, fi{x) is a unique function 
assigned to the i-th unit, and 6" = ±1 is the n-th bit of its information sequence. 

If the information from the i-th unit is sent to the A;-th unit, the latter must use 
the same function fi{x) to be able to stay tuned to the signal sent by the i-th unit. 
The dynamics of the PLL in the signal channel at the fc-th unit is controlled by the 
equations 

ipk  = Wfc = c<;i(l+ mi/i(xfc)+ m3Vfc), C3 30') 
Tvk =      E.'li.i^fc ^ifk - 'Pi) -Vk. 

If only one i-th unit is transmitting {N = 1), and the channel is noise- and distortion- 
free and the CHs are synchronized Xi = Xk, the set of Eqs. (3.29)-(3.30) possesses 
a synchronized solution: 

Vk - m. 
Vk-fi=    ^    Vk, (3.31) 

Therefore, the receiver fc can detect the transmitted bit 6" without errors by deter- 
mining the sign of the PLL output Vk integrated over the bit duration, which means 
that the PLL in the data channel works as a frequency discriminator in respect to 
the CFM signal. 

In a multi-user system, other units besides i, are transmitting the information- 
bearing signal in the same frequency band near wi. This causes an interference signal 
in the PLL of the fe-th receiver, which along with the channel noise leads to certain 
errors. In the next section we study the bit error rate performance in the presence 
of an additive channel noise and user interference. 

3.4.4 Performance evaluation 

The BER performance of CFM communication link in a noisy channel was studied in 
experiment with electronic circuits. The block diagram of simplified system is shown 
in Fig. 3.16. This simplified system models one directional communication between 

Synch 

BS         ,„                     Y 1 1 x(t)| 1 

^ 

CH —" VCO    •■ 

Y 
Data 

/ 
data In 

CH - 

VCO-MS)- fi *■ 

LPF 
data out 

Fig. 3.16. Block diagram of experimental circuit used for measurement of BER 
characteristics of CFM communication system in noisy channel 

the BS and a MU. The synchronization channel only has the relatively small internal 
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noise of the circuit. The additional wide band noise was mixed with the transmitted 
signal in the data channel. In both experiments and numerical simulations we used 
the following simple chaotic oscillator (model "B" from [35]): 

a; =    yz 
y — x-y 

■xy 

(3.32) 
i = 1 

The hardware implementation this system in the electronic circuit is shown in Fig- 
ure 3.17. This circuit uses one quadruple operational amphfier TL084N and two 
multipliers AD633. The chaotic attractor of system (3.32) is shown in Fig. 3.18 (a). 

Fig. 3.17. Circuit digram of the chaotic oscillator used in the experiments 

The VCOs and PLLs of the base station and the mobile unit were implemented 
using a standard 74HC4046 PLL chip. The transmitter and receiver circuits are 
shown in Fig. 3.19. The nominal frequency /o of the VCOs was set to 1.8 MHz. 
The characteristic time constant of the chaos generators was 56 ^msec. In these 
experiments the base station and the mobile units were connected by a wire. As a 
function /(x) controUing the VCOs of the mobile units, we used the second variable 
y of the chaotic generator (3.32) (see Fig. 3.17). 

The quality of the synchronization between the base station and the mobile units 
can be illustrated by the plot a;„ vs. xt, (Fig. 3.18 (b)). 

The power spectra of the chaotic signal ("baseband") and the CFM signal are 
shown in Figure 3.20. We transmitted binary information (pseudo-random sequence 
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5   0 

a 

§ ° 

Fig. 3.18. (a)- chaotic attractor of system (3.32) obtained experimentally in a 
circuit shown in Fig. 3.17; (b)- synchronization between the chaos generators of 
the base station and a mobile unit in electronic circuit. 

of bits) between two mobile units by increasing the instantaneous frequency of the 
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Fig. 3.19. Circuit diagrams of the transmitter (top) and the receiver (bottom). 
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Fig. 3.20. Power spectra of the baseband chaotic signal- (a) and the CFM signal- 
(b). In the right plot, the power spectrum of the channel noise is also shown by the 
dotted line. 

VCOu by 30 kHz with respect to /„ for bit "1" transmission, and decreasing it by 30 
kHz for bit "0". The output signal from the phase lock loop of the receiving mobile 
unit is shown in Figure 3.21. It was integrated over the bit duration for detecting 
the information bit. To evaluate the system performance, we added white Gaussian 

1.0 
time (msec) 

Fig. 3.21. The output voltage v from the PLL of the mobile unit for two different 
values of the noise level: (a) Eb/No = 20dB, (b) Eb/No = 7dB. Dotted Unes indicate 
the original bit sequence 

noise to the transmission channel, and calculated the bit-error rate as a function of 
the normalized signal-to-noise ratio (more precisely, ratio of the energy per bit to the 
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spectral density of noise Eb/No). The obtained performance curve can be compared 
with the standard non-coherent FSK performance [1], [2] (see Fig. 3.22 (a)). As 
one can see, the performance is slightly worse that optimal non-coherent FSK (by 
about 4 dB) for BER > 10"^, however the curve flattens out at lower BER. This 
behavior is a result of occasional events of PLL de-synchronization due to the CHs 
synchronization errors and the internal noise in the receiver. When the CHs were 
perfectly synchronized the system performed at lower BER, but the saturation still 
took place due to the the internal noise in the experimental setup. The performance 
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Fig. 3.22. (a)- Bit-error rate in the single-user CFM transmission as a function 
of the normahzed signal-to noise ratio Eb/No (sohd squares), same for perfectly 
synchronized chaotic oscillators at the transmitter and the receiver (open circles), 
BPSK (open squares), optimal non-coherent FSK (diamonds), and FSK with PLL 
detector (dashed hne). (b)- Bit-error rate in the multi-user CFM transmission as a 
function of the number of users for two values of bit length: 20r (triangles) and 40r 
(circles). 

of the system described in the previous section for multiple pairs of mobile units was 
studied in the numerical simulations. We chose the parameters of the simulation to 
satisfy the stability criteria of the synchronization in a single-user system, namely, 
TTiu = 0.05, mi = 2, T = 20, T = 50. Here T and r were set in reference to wi, which 
was set to 1. The synchronization plot Xu vs. Xb is similar to the experimental one 
presented in Fig. 3.18(b). In order to generate statistically independent signals using 
a single "source" signal x(t) from the base station, transmitters used time-delayed 
versions of the chaotic signal x{t—ATi) with different time delays ATi corresponding 
to different users. Fig. 3.22 (b) shows the bit-error rate as a function of the number 
of users for bit lengths 20T and 40T. The BER smoothly increases with the number 
of users which indicates that the system has good multiple access capabilities. 
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3.5 Conclusions 

We presented two schemes for communication systems based on chaotic signals and 
frequency modulation. For the case when a chaotic signal is used as the carrier, the 
frequency modulation is realized by varying the time scale parameter of the chaotic 
oscillator. In the receiver this frequency modulated chaotic signal can synchronize the 
local chaotic oscillator by using two feed back control loops independently operating 
in the time (r-loop) and the phase space (x-loop) domains. The x-r synchronization 
scheme is a generalization of the phase locked loop for chaotic systems and the 
main properties of this scheme are very similar to the ordinary PLL. Therefore 
the majority of applications of a PLL can be directly transformed to the chaotic 
systems with an a; - T synchronization loop. In particular, modulation of the time 
scale parameter in a chaotic oscillator by an information signal results in generating a 
frequency modulated chaotic signal, whose information content can be demodulated 
in the r-loop. If the chaotic waveform is multiplied by ±1 in accordance with a 
binary information signal, which is equivalent to the BPSK modulation with ±7r/2 
phase shift, a similar synchronization scheme operating with squared signals can be 

used as a demodulator. 
In the second scheme the chaotic signal is used for frequency modulation of 

a periodic carrier to broaden the spectrum. This system is similar to a system 
with interpolated frequency hopping where the pseudo-noise spreading sequence is 
digitally interpolated to ensure smooth carrier frequency variation instead of random 
hopping. This method differs from a simple modulation/demodulation technique, in 
which a phase lock loop directly reconstructs the low-frequency chaotic signal in the 
receiver. In the proposed method the frequencies of the voltage controlled oscillators 
in both transmitter and receiver are modulated by the chaotic generators. The phase 
lock loop detects the error (difference) between the chaotic signals, which is used 
for synchronization of the chaotic oscillators. This allows a reduced PLL gain and 
provides good selectivity of this scheme with respect to the in-band interference. The 
PLL based synchronization scheme has a wide region in the parameter space where 
the synchronous regime is globally stable. In contrast with traditional frequency 
hopping, in this system the receiver is always synchronized to the transmitted carrier 
signal and both phase and frequency modulation can be used for the information 
signal. Our computer simulations show that this scheme is robust against channel 
noise and interference and has good bit error rate characteristics. 
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Summary. Pseudo-chaotic time hopping (PCTH) is a recently proposed encod- 
ing/modulation scheme for UWB (ultra-wide band) impulse radio. PCTH exploits 
concepts from symbolic dynamics to generate aperiodic spreading sequences, result- 
ing in a noise-like spectrum. In this chapter we present the signal characteristics of 
single-user PCTH as well as a suitable multiple access technique. In particular, we 
provide analytical expressions for the BER (bit-error-rate) performance as a function 
of the number of users and validate it by simulation. 

4.1 Background 

Merriam-Webster [1] defines radio as, "the wireless transmission and reception of 
electric impulses or signals by means of electromagnetic waves." For over eighty 
years, communication via wireless electromagnetic waves has been a cornerstone 
of the development of modern society [2]. Only the automobile has had as big an 
impact on society as the radio. The goal of early radio was to achieve wireless com- 
munication over greater and greater distances. As understanding and technology 
improved, the focus shifted to reducing the cost and complexity of radios to ensure 
their commercial viability. More recently, the focus has been to improve the den- 
sity of multi-user communications given a fixed available bandwidth. By and large, 
this has been accomplished by the continued improvement of narrowband (NB) 
communications facilitated by ever improving electronic components and the use of 
information theory to maximize the information density of transmitted signals. Now 
that almost all of the usable spectrum is dedicated to specific and protected users, 
how can the multi-user density be improved further? Possibly by the development 
of ultra-wideband communications where the signal from each user overlays other 
ultra-wideband users as well as existing narrowband users. 

The goal of narrowband systems is to transmit as much information as possible 
on a small slice of frequency space. Usually, we would like to transmit the information 
as far as possible for a given amount of power. Other system users must be able 
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to do the same without catastrophic interference. This has driven high data rate 
narrowband communications to higher and higher center frequencies with small 
percentage bandwidths expressed as 

_ Signal Bandwidth ,, y. 
Center Frequency 

So, a 10 GHz signal with a 100 MHz bandwidth would have a percentage bandwidth 
of 1%. Multiple users are enabled by having channels separated in the frequency, 
time, and/or code domains. In each of these domains, the character of the transmit- 
ted signal is concentrated in frequency. Users must be coordinated in time, frequency 
and/or code domains to keep their data separated from one another. 

Another method of supporting multiple users is to spread the energy from each 
user over a very wide bandwidth. If the percentage bandwidth of the signal, 

%BW > 20%, (4.2) 

then it is called an ultra-wideband signal (UWB). Alternatively, a signal that occu- 
pies > 500 MHz of bandwidth is also called an ultra-wideband signal. 

One possible way of generating UWB signals is through impulse radio, that 
is generating ultra-short pulses characterized by an extremely broad spectrum. In 
contrast with narrow-band communication systems, this type of signals is generally 
locaUzed in time rather than frequency (NB). Although impossible to implement, a 
conceptually simple UWB signal is an impulse function. If the transmitted waveform 
was a single impulse function, the transmitted power spectral density (PSD) would 
be flat over all frequencies. Since this signal occupies all frequencies, the spectrum of 
one UWB user's transmitted signal would overlay every other UWB and NB user's 
spectrum. Within any small range of frequencies, the power in the transmitted signal 
would be very low. This leads to the hope that UWB signals will not interfere very 
much with NB users (still an open research question). Ideally, the UWB signals 
would have spectral notches at frequencies occupied by narrowband users to reduce 
or prevent interference. This is another current topic in the research literature. 
The next best spectral shape of a UWB signal is flat over a range of frequencies. 
Interference from one UWB user to another is visuaUzed in the time domain as 
signals from multiple users being transmitted at the same time (colliding) or being 
transmitted at different times. 

To transmit a stream of information with a UWB system, multiple impulses 
may be used. Recall that a periodic series of impulses spaced every T seconds has 
a Fourier transform that is also periodic, with frequency separation 2iz/T. On the 
other hand, an infinite series of impulses randomly spaced in time has a continuous 
spectrum (i.e. without spectral lines). So, a good modulation format for impulse 
radio would consist of repeating an impulse function with random inter-pulse tim- 
ing. The basic idea of this chapter is to utilize chaos, which still is deterministic, to 
generate the randomness necessary to produce a feature-free spectrum. In particu- 
lar, we apply aperiodic time hopping to a UWB impulse radio system. The use of 
aperiodic modulation preserves the nice spectral features of impulse radio, while the 
deterministic quality can be used for error correction purposes. 

4.1.1 Why Ultra-Wideband Impulse Radio? 

The need for wireless infrastructure is growing rapidly. Someday in the near fu- 
ture wireless infrastructure will be as prevalent as telephony and electrical power 
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are today. The explosion in the number of users has been facilitated by the con- 
stantly falling cost of portable computers, personal digital assistants, cell phones 
and improving information and communications technologies. 

As the density of users of digital communications equipment increases, the need 
to support more users per unit area grows. An emerging network performance metric 
for personal area, local area, and wide area networks is the spatial information 
capacity measured in bits per second per unit area reflecting the need to support 
a large number of users within a confined space each requiring a high data rate. 
Notice that long range transmission is not the goal here as is typically the case with 
communications systems. In order to have a large spatial capacity, it is desirable 
for the signal strength to decay quickly enough to allow frequency reuse in nearby 
areas. UWB impulse radio may offer good performance for this application. 

The spatial capacity of IEEE 802.11b with 100 m range and aggregate speed of 
33 Mbps, is about 1 Kbps per square meter [5] while 802.11a with 50 meter range 
and an aggregate speed of 648 Mbps results in a spatial capacity of approximately 
83 Kbps per square meter. Bluetooth, on the other hand, is targeted for 10 m 
applications with an aggregate speed of 10 Mbps or a density of 30 Kbps per square 
meter. The spatial capacity of UWB systems vary from system to system but in [5], 
it is projected that six users can be supported at 50 Mbps with 10 m range resulting 
in 1000 Kbps per square meter, an enormous increase in density. 

One of the reasons UWB systems have the potential for such a large spatial 
capacity lies in the channel capacity of wideband signals. In 1948, Shannon formal- 
ized Nyquist's work to optimize band-limited channels operating in additive white 
Gaussian noise (AWGN). Shannon's channel capacity, C, is expressed as 

where W is the band-limited channel bandwidth, P is the transmit power, and No 
is the noise power spectral density. If the data rate, R is less than C {R < C), 
error-free data transmission is theoretically possible, li R > C, errors will occur 
regardless of what processing is performed at the transmitter and receiver. Notice 
the channel capacity increases linearly with bandwidth but only logarithmically with 
signal-to-noise ratio (transmit power). So, the Unear expansion of channel capacity 
with channel bandwidth provides some insight into why UWB signals are natural 
for high data rate applications. It should be noted, however, that nothing comes 
for free. High data rates require high pulse repetition frequencies (PRFs) resulting 
in increased transmit power and interference to existing narrowband users. Recent 
work by Fontana [6] suggests that PRFs greater than the resolution bandwidth of a 
narrowband receiver causes interference to the narrowband receiver proportional to 
the square of the PRF. 

UWB impulse radio has the potential to be power efficient by scaling the pulse 
repetition frequency to the desired data rate. In typical coherent narrowband sys- 
tems, a sinusoidal carrier must be transmitted continuously to maintain phase lock 
between the transmitter and receiver. Synchronous UWB impulse radio must also 
maintain timing lock between the transmitter and receiver but with rapid rise-time 
and short duration impulses, the average transmitted power can be very low for low 
data rates and higher for higher data rates while the peak power in both cases is very 
high with a constant energy per bit. Time Domain Corporation claims a prototype 
impulse radio system that achieves a 39 Kbps transmission rate with 250 microwatts 
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Fig. 4.1. Maximum allowable emission limits provisionally granted by the FCC for 
indoor ultra-wideband radio (from [8]). 

of transmit power at ranges up to 10 miles [7]. UWB impulse radio transceivers are 
also potentially simple and inexpensive to produce because novoltage-controUed os- 
cillators or mixers are required. 

UWB impulse radio has the potential for good narrowband jamming immunity 
because the signal is spread over an ultra-wide bandwidth. In this case, the spectrum 
of the narrowband jammer occupies a small portion of the UWB users spectrum 
leaving a large portion of the spectrum un-jammed. Of course, the specific receiver 
design is important and if not designed carefully could be intolerant of narrowband 
jammers. Because the power spectral density of UWB signals is low, the probability 
of detection and intercept is low using traditional narrowband detection equipment. 
This, of course, will lead to better detection equipment possibly operating in the 
time domain. 

The Federal Communications Commission (FCC) has provisionally approved in- 
tentional radiation between 3.1-10.6 GHz for UWB products under a strict power 
level mask [8]. The levels approved were already acceptable under FCC Part 15 
guidelines for unintentional radiators. The fact that the FCC ahready allowed unin- 
tentional interference to existing narrowband users in the band is an indication of 
how low the permissible power level is. Fig. 4.1 indicates the permissible power level 
over the band for indoor devices. The low permissible power levels encourage the 
design of systems that produce outputs with a flat transmit spectrum. It is shown 
in [9] that pseudo-chaotic time hopping of impulse radio produces a flat spectrum 
without the spectral comb hnes produced when periodicity is introduced into the 
modulation as in [7]. 
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4.1,2 Pseudo-Chaotic Modulation 

Over the last decade, there has been a great interest in UWB impulse radio communi- 
cation systems. These systems make use of ultrarshort duration (< Ins) pulses which 
yield ultra-wide bandwidth signals characterized by extremely low power spectral 
densities [10, 11]. UWB systems are particularly promising for short-range wireless 
communications as they potentially combine reduced complexity with low power 
consumption, low probability of intercept (LPI) and immunity to multipath fading. 
The successful deployment of UWB technology depends strongly on the develop- 
ment of efficient multiple access techniques. Existing UWB communication systems 
employ pseudo-random noise (PN) time hopping for multiple access purposes, com- 
bined with pulse-position modulation (PPM) for encoding the digital information. 
An analysis of the multi-user capabiUties of such systems has been presented by 
Scholtz et al. in [12, 13, 14, 15, 16]. 

Recently, it has been suggested to use aperiodic (chaotic) codes in order to en- 
hance the spread-spectrum characteristics of UWB systems by removing the spectral 
features of the transmitted signal, thus resulting in a low probabihty of intercept. 
In addition, the absence of spectral Unes may translate into a reduced interference 
towards other services such as GPS (Global Positioning System) [17]. In [18], the 
use of aperiodic sequences of pulses in the context of a chaos-based communication 
system was first proposed. A few schemes with chaotic modulation of the inter-pulse 
intervals were then studied in [19, 20]. In [21], a similar scheme was designed for the 
transmission of binary information and named chaotic pulse-position modulation 
(CPPM). Also, a scheme introducing a frequency modulation on top of the chaotic 
time hopping has been reported in [22]. 

Pseudo-chaotic time hopping (PCTH), a modulation scheme for UWB impulse 
radio, was first proposed in [23, 9]. PCTH exploits concepts from symbohc dy- 
namics [24] to generate aperiodic spreading sequences that, in contrast to fixed 
(periodic) PN sequences, depend on the input data. The PCTH scheme combines 
pseudo-chaotic encoding with multilevel pulse-position modulation. 

Pseudo-chaotic time hopping (PCTH), a modulation scheme for UWB impulse 
radio that exploits concepts from symbolic dynamics [24] to generate aperiodic 
spreading sequences that, in contrast to fixed (periodic) PN sequences, depend on 
the input data. The PCTH scheme combines pseudo-chaotic encoding with multi- 
level pulse-position modulation. The pseudo-chaotic encoder operates on the input 
data in a way that resembles a convolutional code [4]. Its output is then used to 
generate the time hopping seqirence resulting in a random distribution of the inter- 
pulse intervals, and thus a noise-hke spectrum. Significant spreading demands a large 
number of levels in the transmitter. This, in general, would require at the receiver 
a convolutional decoder with a large number of states. In [9] it is shown that the 
PCTH signal can be decoded with a Viterbi detector [4] of reduced complexity, i.e. 
with a Umited number of states. Moreover, detectors of different complexity (and 
performance) may coexist while decoding the same transmitted PCTH signal. This 
scalability property, which is not present in conventional convolutional coding, adds 
flexibility in terms of the receiver design. 

Multi-access PCTH (MA-PCTH) is an extension of PCTH. The basic idea con- 
sists of replacing each pulse transmitted by the original PCTH scheme with a pulse 
train, different for each user. The pulse train is a unique user "signature". Each user 
is then demodulated with a filter matched to its signature. 
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InfoimatioD Source 
(1-bit per frame) 

Channel Encoder 
(n-bits per frame) 

N-ary Pulse-Position 
Modulator 

(1 symbol per frame) To channel 

Fig. 4.2. Generic transmitter. 

4.2 Single-User Pseudo-Chaotic Time Hopping 

4.2.1 Introduction 

The communication system to be considered in this work comprises a transmitter 
shown in Fig. 4.2 containing a channel encoder and pulse-position modulator, and a 
receiver containing a demodulator, detector and channel decoder. Multilevel pulse- 
position modulation is considered to be driven by a pseudo-chaotic channel encoder 
based on the Bernoulli shift map. 

PCTH [23, 9] exploits concepts from symbolic dynamics [24] to generate aperi- 
odic spreading sequences that depend on the input data. Its output is then used to 
generate a time-hopping sequence that results in a random distribution of the inter- 
pulse intervals, and thus a noise-like spectrum. As will be shown, the pseudo-chaotic 
time hopping code can be considered to be a specific convolutional code. 

The next section will describe the modulation format used by PCTH. The fol- 
lowing section will describe the PCTH channel encoder in terms of its characteristic 
polynomial. The first receiver that will be considered is a matched filter, the opti- 
mum frame-by-frame receiver in additive white Gaussian noise (AWGN). It utilizes 
the maximum likelihood criterion followed by a threshold decoder followed by the 
second receiver based on maximum likelihood sequence estimation (MLSE) via the 
Viterbi algorithm. Finally, the bit-error rate performance for hard decoding will be 
presented. 

4.2.2 Signal Description 

In this section, the modulation used by PCTH will be described. The waveforms are 
N-ary (A'' = 2") orthogonal based on pulse-position modulation (PPM). As shown 
in Fig. 4.3, within the period of each frame, TF, one of the N signals {snit),n = 
0,1,2,..., (AT - 1)} is transmitted according to the encoded data presented to the 
modulator. For simplicity, a rectangular pulse shape has been assumed where, 

(4.4) 

(4.5) 

Sj(t) = w{t -jT,),  i € {0,1,..., (AT - 1)} and TF = N% 

^ r^,o<«<T, 
\ 0,   otherwise. 

w{t) 

The functions, {sj{t)} form a set of N orthonormal basis functions where, 

ai{t)sj{t) dt = 5ij. I J —i 

(4.6) 
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Fig. 4.3. Sketch of the periodic frame. The frame period and the slot period asso- 
ciated with each PPM level are denoted by TF and Tj, respectively. 

For the fe*'' frame transmitting the /c"' encoded information bit, the transmitted 
signal is 

s''{t) = w{t-XkTs-kTF),  wherea;fce{0,l,2,...,(iV-l)}. (4.7) 

4.2.3 Modulation 

In this section, the basics of the single-user PCTH scheme as shown in Fig. 4.4 are 
presented [9, 28]. Let us start by recaUing some useful concepts from the symbolic 
dynamics associated with the shift map. Symbolic dynamics may be defined as 
a "coarse-grained" description of the evolution of a dynamical system [24]. The 
idea is to partition the state space and to associate a symbol with each partition. 
Consequently, a trajectory of the dynamical system can be analyzed as a symbolic 
sequence. The Bernoulli shift [25] is a simple example of a chaotic map and is defined 
as 

Xk+\ = 2xk mod 1, (4.8) 

and whose graph is shown in Fig. 4.5. The initial state, xi, can be expressed as a 
binary expansion 

oo 

a;i= 0.616263... = ^2-^6^, (4.9) 

^-^ 
with bj equal to either "0" or "1", and x\ & I = [0,1). The next state of the map, 
X2, is just 

0:2=0.626364... (4.10) 

For this map, a Markov partition [24] can be selected by splitting the interval I = 
[0,1) into two subintervals: 7o = [0,0.5) and h = [0.5,1). Then, in order to obtain a 
symbolic description of the dynamics, the binary symbols "0" and "1" are associated 
with the subintervals /o and /i, respectively. Fig. 4.5 shows the symbolic dynamics 
used by the PCTH scheme. It should be noted that the most significant bit of the 
state, Xk, determines which subinterval the current state occupies. 

If the initial condition, x\ G SR, is chosen randomly with a uniform probability 
density in the interval [0,1), the points that lie on a periodic orbit are dense. This 
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Fig. 4.4. Simplest block diagram of the single-user PCTH receiver utilizing the 
maximum likelihood criterion on a frame-by-frame basis. 

means that for any xi, and any e, no matter how small, there is at least one point 
in the interval, [a; - e, a; + e], that Res on a periodic orbit. The number of points on 
a periodic orbit are countably infinite while the number of points that do not he on 
a periodic orbit are uncountably infinite [25]. As a result, randomly chosen initial 
conditions (with uniform probability density) lie on a periodic orbit with probability 
zero. This alleviates any worry that randomly chosen initial conditions will result in 
periodicity in the signal made-up of the initial condition and successive iterates of 
the BernouUi shift map. 

In PCTH, the initial condition, xi, is considered to be a long sequence of binary 
information expressed using Eq. 4.9 rather than a real number. This long stream of 
i.i.d. data can be considered to be equivalent to a randomly chosen initial condition, 
xi 6 [0,1). Next, the Bernoulli shift is approximated by the first (M + l) bits of the 
sequence. An iW-bit shift register, R, holds the last M information bits. Together 
with the most recent information bit (LSB in the register) which does not need to be 
stored until the next state, an (M -I-1) bit word is generated that approximates the 
entire long sequence with {M +1) significant binary digits. The state space of x has 
2^ states. Multiphcation by 2 in Eq. 4.8 corresponds to a left shift (62 goes to fci, 
etc.), while the modulo one operation is reahzed by discarding the most significant 
bit (MSB). At each clock impulse the most recent bit of information is assigned the 
least significant bit (LSB) position in the shift register. 

From the viewpoint of information theory, the shift register implementing the 
Bernoulli shift may be seen as a particular convolutional encoder [24, 26]. The mem- 
ory of the structure is given by the shift register which stores the last M input bits. 
Each input bit causes an output of (M + 1) bits; thus the overall rate is 1/(M -I- 1). 
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"0" I "1" 

Fig. 4.5. The symbolic dynamics of PCTH. 

In general, the shift register may be followed by a transformation unit for generating 
more complex chaotic maps. For example, the simple transformation achieved using 
a Gray/binary converter on the Bernoulli shift leads to the tent map, described by 
Eq. 4.11, 

Xk+i = 1 - 2 Isfc - 0.5|. (4.11) 

Fig. 4.6 shows the system block diagram including the transformation block reported 
in [9]. In this work, no transformation unit is used and the basic PCTH scheme of 
Fig. 4.6 is considered. In PCTH, the output of the pseudo-chaotic encoder is used 
to drive an N-ary pulse position modulator {N = 2^^'*'^^). Each pulse is allocated, 
according to the pseudo-chaotic modulation, within a periodic frame of duration 
TF as shown schematically in Fig. 4.3. Only one pulse is transmitted within each 
symbol period, TF- If the pulse occurs in the first half of the frame a "0" is being 
transmitted, otherwise a "1". Each pulse can occur at any oi N = 2^^'*'^^ discrete 
time instants. 

The simplest PCTH receiver in a memoryless AWGN channel comprises a pulse- 
position correlator, or matched filter, followed by an optimum detector utilizing the 
maximum likelihood criterion as the decision rule. This receiver is optimum in that 
it minimizes the probability of error on a frame-by-frame basis but does not take 
advantage of the dependence of each symbol (code word) on the previous M symbols 
as would an optimum decoder using maximum-likelihood sequence estimation. In 
this case, the binary information may be retrieved by means of a threshold decoder 
at the output of the detector. Since the threshold of the decoder is set to 0.5, 
the effect of the decoder is to simply strip off the most significant bit (MSB) of 
the detector output. In terms of the symbolic dynamics, the MSB of the detector 
output specifies in which interval the detected symbol resides, Jo or h. Although not 
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Fig. 4.6. Block Diagram of the single-user PCTH transceiver with a map transfor- 
mation from the BernoulM shift to the tent map. Prame-by-frame maximum likeli- 
hood detection is shown. 

required and often difBcult to implement, ideally a matched filter to the transmit 
pulse-shape is the first block in the receive chain and is shown in Fig. 4.6. 

4.2.4 Bernoulli Shift as a Convolutional Encoder 

In PCTH, the Bernoulli shift takes the current information bit in addition to M 
past information bits to generate a code word. Thus, the convolutional encoder [24] 
has memory of length M and a rate of 1/(M + 1). In this work two cases are 
considered; 3-bit (M = 2) and 8-bit (M = 7) implementations of the Bernoulli shift 
map. Correspondingly, the encoders may be seen as convolutional encoders with 
constraint lengths K ={M-\-\) = i with s = 2^ = 4 states and if = (M -fl) = 8 
with 8 = 2' = 128 states. Fig. 4.7 shows an implementation of the 8-bit BernouUi 
shift encoder. By inspection, one can also write down the generator matrix in the 
standard octal form for the 128-state and four-state BernouUi shift maps as 

and 

GB& = [200 100 040 020 010 004 002 001]^ 

GB3 = [4 2 1]' 

(4.12) 

(4.13) 

State Diagram and Polynomial Description 

Every convolutional encoder is a finite state machine (FSM). The current state of 
the machine was determined by the previous state and the most recent information 
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Input 

Output-" 

Fig. 4.7. Equivalent convolutional encoder to the Bernoulli shift map for M = 7 
bits. Note that the values contained in the 7-bit shift register correspond the next 
seven information bits. 

Input 

Output ■♦- V. 
Fig. 4.8. Four-state BernouUi shift convolutional encoder {M = 2). 

bit (least significant bit). There are a limited number of paths that lead to any- 
state. The decoder takes advantage of this and as a result provides coding gain to 
the receiver. 

The 8-bit BernouHi shift has a state diagram with 128 states. Since this is an 
unwieldy number, a smaller four-state Bernoulli shift (M=2) will be considered for 
the following discussion. This reduced-state encoder is shown in Fig. 4.8. Assigning 
symbols to each state in Table II. 1, and noting the transitions between states and 
their accompanying output symbols in the state table shown in Table II.2, the state 
diagram in Fig. 4,9 can be generated. 

The performance of convolutional codes in terms of coding gain depends on the 
decoding algorithm and the distance properties of the code itself [29]. The most 
important distance property of a convolutional code is the free distance, d/ree- It 
characterizes the minimum Hamming weight of all the paths in the state diagram 
that diverge and remerge with the all-zero state of the code. To determine the free 
distance of the code consider Fig. 4.10. The free distance is the smallest Hamming 
weight of the output sequence generated along the path from 3° to SQ. For the 
four-state Bernoulh shift, this path is shown in Table II.3. This path from SQ to SQ 

has a Hamming weight of three (also a Hamming distance of three to the all zero 
path). The second shortest path from 3° to SQ is shown in Table II.4. This path has 
a Hamming weight of six. Both of these are possible error paths that the decoder 
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State -Ri Ro 

So 0 0 

Si 0 1 

52 1 0 

S3 1 1 

Table 4.1. State assignments for a four-state Bernoulli shift. 

State /n = 0 In=l 

00 000/  00 001 /   10 

01 100/  00 101/  10 

10 010/  01 110/   11 

11 Oil/  01 111/  11 

T^ble 4.2. State table with output/next state for a four-state Bernoulli shift. 

could take and each one contributes to the bit-error rate of the communication 
system. There are paths of greater distance as well. In fact, the number of paths 
and their lengths depend on the length of the input sequence making a precise BER 
determination impossible. As a result, error bounds must be used. Not surprisingly, 
the minimum distance error path dominates the BER performance of the systerh 
under high signal-to-noise ratio conditions [4]. 

. The complete distance properties can be determined from the transfer function 
of the code derived from the state diagram. The transfer function is determined as 
a ratio of polynomials representing the number of branches traversed expressed as 
the exponent of W, the Hamming weight of the input expressed as the exponent 
of X, and the Hamming weight of the output expressed as the exponent of Y. 
Fig. 4.11 shows the state diagram with the branches relabelled with the appropriate 
polynomials. 
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Fig. 4.9. State diagram for the four-state Bernoulli shift convolutional encoder 
(M = 2). 

1/001 

1/110 

0/100 

Fig. 4.10. State diagram used to calculate the minimum Hamming weight sequence 
that differs from the all-zero sequence of the four-state Bernoulli shift. 

The transfer function can be determined from the system of equations evident 
in the signal-flow graph of Fig 4.11: 

El = WYE2 + WY^Ea (4.14) 
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Input 1       0       0 

State ^o —*• <S'2  —* -Si   -+ So 

Output 001    010    100 

Table 4.3. Shortest path in the four-state PCTH encoder starting in the all-zero 
state, So, and ending in the all-zero state, SQ. 

In 110       0 

State So —^ S2  —* S3 —+ Si  —> So 

Output 001    010    oil    001 

Table 4.4. Second shortest path in the four-state PCTH encoder starting in the 
all-zero state, So, and ending in the all-zero state. So- 

WY 

WXY 

WXY' 

Fig. 4.11. Signal-flow graph used to generate the polynomial description of the 
four-state Bernoulli shift. 

E2 = WXY^'Ei + WXYE^ (4.15) 
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E3 = WXY^Ei + WXY^Ea (4.16) 

E] = WYEi. (4.17) 

Solving Eq. 4.16 for E3, and substituting into Eq. 4.14, we see 

Substituting for Ei in Eq. 4.17 leads to 

Rewriting Eq. 4.15 for EQ and substituting Eq. 4.18 for Ei, 

po      E2 2 / W^XY^   \ 
l-WXY^ lWY+ ^ 

(• WXY3J_ 

Finally, dividing Eq. 4.19 by Eq. 4.20, the transfer function is 

W^XY^ 

(4.20) 

(4.21) 
1 - WXY^ - W'XY^' 

Using the transfer function, the Hamming weights of all the output sequences of 
code words (powers of Y) and input sequences (powers of X) that start in So and 
end in So can be found by setting W = 1 resulting in, 

T{X,Y) = T{1,X,Y)= ^_^^Y^, (4.22) 

or, by also setting X = 1, just the output sequences 

r(Y)=T(l,l,y) = j-^. (4.23) 

Expanding T{Y) in a power series for (1 - x)~^ = 1 + a; + a;^ + x' + ..., 

T{Y) = y'(l + 2Y^ + 4Y^ + 8Y^ + ...) = Y^ + 2F® + SY^"" + ....        (4.24) 

The interpretation of this result is that starting from the all-zero state and returning 
to it there is one path around the state diagram with a Hamming weight of three, 
two with a Hamming weight of six, four with a weight of nine, etc. So, four-state 
PCTH has a free distance, d/ree = 3. 

Observe from Table n.2 that the number of states visited between the first 
deviation from the all-zero path and the remergence with the all-zero path is equal 
to the constraint length, K = 3. Because the Bernoulli shift corresponds to a to 
a single bit-error propagating through the shift register, the Hamming weight of 
the output sequence is also equal to the constraint length. Thus, for the Bernoulli 
shift, the minimum Hamming distance between the all-zero sequence and minimum 
distance error path through the trellis is equal to the constraint length. Accordingly, 
the free distance of the 8-bit Bernoulli shift is d/rce = 8. 
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4.2.5 Optimum Prame-by-Frame Receiver 

sHt)- 

Channel 

G> 
AWGN 

m^ N-ary Pulse- 
Position 

Demodulator 
Detector 

r''=rr''r'=r''        r    ''1 

Output Decision 

Fig. 4.12. Basic N-axy receiver configuration. 

Let us assume the N-axy orthogonal signal described in Sec. 4.2.2 is transmitted 
over a channel that is memoryless and corrupted by additive white Gaussian noise 
(AWGN) as shown in Fig. 4.12. The received signal for the fe-th frame is 

r^''\t) = s^''\t) + nit), (4.25) 

where n{t) is AWGN with power spectral density a' = No/2 W/Hz. The job of the 
receiver is to correctly classify r'-'''>{t) into the correct slot, Xk, for each A;. The two ap- 
proaches to classification are the Neyman Pearson (NP) approach and the Bayesian 
approach. The NP approach maximizes the probability of detection subject to a 
fixed false alarm rate. This approach is often used in sonar and radar applications. 
The Bayesian approach minimizes the cost of the decision made and leads to the 
minimization of the probability of classification error [30] for each frame. 

Dropping the frame index, k, and breaking down r{t) into its components in 
terms of the orthonormal basis functions, Sj, we have 

dt rit)sjit) 
-OO 

/OO yoo 

s{t)sj{t)dt+   /     n{t)sj(t)dt 
-OO J —OO 

= Pj + nj (4.26) 

where. 
/OO 

s{t)sj{t) dt. 
•OO 

The multiple hypotheses for each frame from which the receiver must choose 
are, 

Hi  ■.ri = Si +ni, 

Tk =nk, VA; ^i. (4.27) 
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If the cost of making an error from each Sj{t), Vj to any of the other {N - 1) 
possible signals is equal, then the maximum likehhood decision rule minimizes the 
cost function by choosing the hypothesis, Hi, ii 

Pr(si I r) > Pr(sk | r),  Vi y^ fe. (4.28) 

This selection criterion is the maximum a posteriori probability (MAP) criterion. 
Since these probabilities are unknown, Bayes' rule is used to express, 

If each of the signals, si are equally probable and Pr(r) is independent of si, choosing 
the largest Pr(r | si) is equivalent to choosing the largest Pr'(si | r). Given the noise 
statistics, these probabilities can be computed for each si. 

Since the noise components, rij, are uncorrelated Gaussian random variables, 
they are also independent allowing the probability density function of Pr(r | si) to 
be written as the product [31] 

(N-l) 

P(r|si)=   JJ  p(rfc|si,fc),   A; = 0,1,..., (AT-1), 
*:=0 

leading to 

^('•i^'^ = v^^'^p No 
,   i = 0,l,...,(Ar-l).       (4.29) 

The term in the exponential is the distance between the received vector r and si 
where 

r=[ro,ri,r2,...,rN-i], (4.30) 

and 
Si = [sj.o Si,i, Si,2, ••■ Si,(Ar-i)], (4-31) 

where, for example, 

S3 = [03,0 03,1,   S3,2,     l3,3,...,   03,(Ar-l)]. 

The terms from the product are [4, 31], 

(N-l) 

fc=0 

The first term is the received energy and the third term is the isnergy of the trans- 
mitted signal SI). Assuming, equal energy si, Vi, these are constants as well. The 
only signal dependent term is the middle term, the projection of r on Si. The de- 
modulator diagrammatically shown in Fig. 4.13 performs the cross-correlation. 

Without loss in generality for any particular frame [4], assume so was sent by 
the transmitter. Then the outputs of the correlator will be 

r = [a  + ano,a,ni,an2,-■ ■ ,anN—i], 
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i»(t) 

|s„(t-lcTp) 

-M X 

|S,(t-kT,) 

-M X 

|Sj(t-kTp) 

-W X 

IVOC-^F) 

()dt 

()dt 

()dt 

Fig. 4.13. Correlation demodulator for the fc-th frame. 

where the energy the transmitted signal is a^. Dividing each amplitude by a, an 
equivalent vector is 

r =[a + no,ni,n2,---,nN-\\- (4-32) 

The probability density functions for the {N - 1) slots where j ^ 0 are [4] 

p{xj) = 
y/irNo 

exp 
{xjr 
No 

and for the first slot, ro, 

pixo) 
v/TriVo 

exp 

i = i,...,(Ar-i), 

{xo - a)^ 
No 

The probability of making a correct decision is then [4] 

/oo 
Pr(ni < ro \ ro)Pr{n2 < ro \ ro). ..Pr{nN-i < ro \ ro) piro) dro  (4.33) 

-oo 

Each of the terms involving m for i 7^ 0 has the form 

p{xi) dxi i # 0, 
-00 

and so 
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dx 
(N-l) 

Finally, since the probability of symbol error [4, 31], Pe, 

= '-pv5^/I[/_>''(-^)'^, 
n (N-i) 

{z-af 

p{ro) dro. 

l-Pc, 

r (z-ar 
No 

No 
dz 

dz, 

where 
<?(a;) = -i= r   e-^dt. 

(4.34) 

dz 

(4.35) 

This is the probabihty of error for any equal energy Af-ary orthogonal signal set. 
Fig. 4.14 compares this probability of error to that obtained by Monte Carlo simu- 
lation of the PCTH system in AWGN. 

10° 

10-'   r 

Ul      lO"" 
01 

10- 

10 

E,/N,(CIB) 

12 

.  I   1   1   j   .   .   . '  ' .          j          .          .          .          1          .          .          .          j          .          .           1        ; 

^—& i--~a^ 
—o— PCTH (THR) / 256 -PPM 1 ■ 
--a--PCTH (SIM)                    1 . 

 .:^is.  

i ji  .-.           : 

- i  

.  ,  .  i  .  .  . 

;V 
Fig. 4.14. Simulated vs. analytical BER performance of single-user PCTH in the 
presence of AWGN. Note that in this case the error probability coincides with or- 
thogonal 256-PPM (from [28]). 
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4.2.6 Maximum Likelihood Sequence Estimation 

The Viterbi algorithm is used to implement both hard and soft maximum likelihood 
sequence estimation. Hard decoding utilizes the Hamming distance (the difference 
in the number of ones) between candidate and received code words to select the 
most Ukely transmitted code sequence. The Hamming distance between two paths 
through the trellis, i and k, can be expressed as 

H(i,k) = li®lk, 

where h and h are the sequences of output code words along paths i and k and ® 
indicated modulo 2 addition. 

Without loss in generality, due to the linearity of convolutional codes (evidenced 
by the fact that the operation of the code can be expressed using linear algebra), a 
bound on the probability of error can assume that the all-zero information sequence 
is transmitted. This is true because the set of Hamming distances per code word 
between the all-zero sequence, lo, and any code sequence, L, is the same as the set 
of distances between any other sequence, h, and la- 

The Viterbi algorithm compares the received sequence to each surviving path 
through the trellis and chooses the path with the smallest distance. So, the decoder 
can be considered to perform a pairwise comparison between the received sequence, 
IR, and each sequence through the treUis, h. Assuming the all-zero sequence is 
transmitted, say the decoder is comparing the distance between IR and lo with the 
distance between IR and some other path, ID- Let the Hamming distance between 
lo and ID he H{0,D) = d. If the Hamming distance between the received sequence 
and the all-zero sequence H{0,R) < i(d-H), then the received path is closer to 
the all-zero path than ID resulting in the correct path being chosen. Since the all- 
zero path is being transmitted, the Hamming weight of the received path is also 
the number of errors experienced over the channel. If H{0, R) > ^{d+ 1), then the 
wrong path will be selected. The probability that the wrong path is selected for an 
odd distance, d, in this pairwise comparison is then [4, 33, 34] 

P^(d)=   E   (^)p\l-p)'*-\ (4.36) 

where p is the probability of bit error over the channel. This is simply the binomially 
distributed probability that between 5(^-1-1) and d errors occur over the channel. 
If d is even, the incorrect path is chosen when H{0, R) > ^d. When H{0, R) = ■2d, 
there is a tie between the distance to the all-zero path and the competing path ID- 

So, an average of 5 of these cause an error. Then the probability of error for an even 
distance, d, is 

A long information sequence results in many paths that diverge from the all-zero 
path and remerge at any particular node. The number of such paths depends on the 
length of the information sequence causing the probabiMty of error to be dependent 
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on the length of the information sequence. An upper bound can be expressed as the 
union bound of the pairwise error probabilities, 

oo 

Pe=    E    ^''-P^W, (4.38) 

where ad is the number of paths Hamming dista;nce d from the all-zero path and 
dfree IS the free distance of the code. The values of aj are just the coefficients in the 
expansion of TiX). Note that some values of Od = 0 where there is no term in the 
expansion of T{Y) oc Y^. The probability of information bit error can be found by- 
observing that the exponent of X in each term of T{X, Y) is equal to the number 
of ones in the information sequence (and the number of errors from the all-zero 
information sequence). This is the number of bit errors experienced along the path. 
By taking the derivative and observing its form, 

dT{X,Y) 
dX ■ Pajr^.y^''" + Pd^y''" + ^d^y""' (4-39) 

x=i 

we find the probability of bit error to be 

P,=    g   ySdP2(d), (4.40) 
d=d free 

where again some values of /3d axe 0 due to the absence of terms (exponents of X 
with value d in the expansion of T{X, Y)). For M-ary orthogonal signals (M = 2*) 

PCTH 

For the three-bit Bernoulli shift, evaluating Eq. 4.21 at W=l results in Eq. 4.22, 

T{l,X,Y)=T{X,Y) = YZ2XY^- ^^'^^^ 

Applying Eq. 4.39 we find 

= Y^+W^ + 12Y^ + ..., (4.43) dTB3{X,Y) 
dx 

or 
[dfree, da,db] = [3, 6, 9] 

[Pdfree, pa, I3b] = [1,4,12], 

which results in a probability of bit error bounded by 

Pb<l- P2{3) + 4 • P2(6) + 12 • P2(9). (4.44) 

Fig. 4.15 shows this bound as a function of Et/No, as well as the lower bound 
taken by considering only the first term in Eq. 4.43, the free distance term. Also 
shown are Monte Carlo simulation results with 100 errors counted per point. 
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Fig. 4.15. Simulated vs. analytical BER performance of three-bit single-user PCTH 
using hard Viterbi decoding in the presence of AWGN (from [38]). 

4.3 Multiple Access for Pseudo-Chaotic Time Hopping 

4.3.1 Introduction 

Most communications systems have a requirement to support multiple users simul- 
taneously. With a fixed portion of electromagnetic spectrum, this could be accom- 
plished by breaking-up the spectrum into channels and assigning a channel to each 
user (FDMA), or assigning the entire spectrum to one user at a time by assigning 
a timeslot to each user (TDMA), 6r the same spectrum can be shared by multiple 
users at the same time by assigning codes to each user (CDMA). 

In this work the single-user PCTH described in Sec. 4.2 will be extended to a 
multi-access system by assigning unique signatures to each user. Here, randomly 
selected 32-bit binary codes were chosen to each have 16 ones and 16 zeros. Slotted 
multi-level pulse-position modulation is considered where the entire signature for 
each user is pulse-position modulated according to each users' channel encoder. A 
slotted system assumes synchronism between users and modulation that permits 
user signatures to overlap uniquely so that only periodic cross-correlations need to 
be considered. 

4.3.2 System Description 

Fig. 4.16 shows a block diagram for the proposed multiple access scheme based on 
pseudo-chaotic time hopping, denoted by MA-PCTH. The transmitter/receiver ar- 
chitecture shown in Fig. 4.16 refers to the generic j-th user and includes a map 
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 jy-j-JJs&rQ) 
Pseudo-chaotic encoder 

i.l.d. source 
bO), M-bit 
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,<illlilii 
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Transversal 
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Fig. 4.16. Simplified block diagram of the MA-PCTH scheme using the optimum 
frame-by-frame maximum likeUhood receiver (from [28]). 

transformation unit for generality [23]. For the remainder of this work, the pseudo- 
chaotic encoder considered has no transformation unit but rather is the simplest 
PCTH encoder where the shift register drives the symbohc digital-to-analog con- 
verter directly (as shown in Fig. 4.4). The input to the system is an independent and 
identically distributed source of binary data, b^J^, where the lower index denotes the 
fc-th information bit. The input sequence feeds the pseudo-cha«tic encoder, whose 
operation has been described in Sec. 4.2. In single-user PCTH, the output of the 
pseudo-chaotic encoder, djf\ drives the N-PPM modulator producing the time hop- 
ping. In MA-PCTH, though, the output of the modulator is used to trigger a pulse 
train generator corresponding to the specific signature, c^'\ associated with the j-th. 
user. In this work, for simpUcity, we consider a slotted system where the periodic 
frames of all users are synchronized. Each frame is sub-divided into N slots of du- 
ration Ts = TF/N. In turn, each slot contains Nc chips; correspondingly, the chip 
duration is given by Tc = Ts/Nc- In this analysis it is assumed that the signature 
for each user is confined within one slot duration, T,, i.e. the user signatures do 
not invade adjacent slots. This also implies that, within a given frame period, TF, 

two generic users (j) and (k) will either transmit in different slots or coUide in the 
same slot. The situation for a single frame period, is illustrated in Fig. 4.17. The 
transmitted signal, s^^^t) for the j-th user can be expressed, for each frame, as 

Nc-l 
M) it) Y,c'fWt- ITc 4'^T.), te[0,TF),   fc = 0,l,2,...,      (4.45) 

1=0 
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(i) 
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Tc-lh 
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1 k) 
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s N-1 

Fig. 4.17. Sketch of the periodic frame for the MA-PCTH scheme with three users. 
The frame period, TF, is divided into N slots, each of duration T, = TF/N.. Note the 
different "signatures" associated with the different users. Users (j) and (k) exhibit 
a collision in the third slot, S2 (from [28]). 

where c^^^ £ {0,1} is the binary sequence representing the j-th user's signature for 
/ € {0,...,Nc - 1}. On the other hand, Wp{t) is the pulse waveform that in this 
work is assumed to be rectangular. 

'' \   0,  otherwise, 
(4.46) 

where Tp is the pulse duration, and Tp < Tc- So, for each information bit, b^^\ a 
pseudo-chaotic iterate d'j^^ e {0,..., N-1} is generated and the pulse train for the 
j-th user is transmitted in the corresponding slot within the frame. 

In the case of a single user, the signal received is simply 

r(t) = s{t) + n(i), (4.47) 

where n{t) is additive white Gaussian noise (AWGN). In general, with Nu users 
transmitting simultaneously, the input to the j-th. receiver will be 

r^^\t) = s^^\t)+n^\t)+n{t), (4.48) 

where the term ni^^(t) takes into account the multiple-access interference (MAI) 
caused by the remaining (Nu - 1) users sharing the channel. 

Referring to Fig. 4.16, the j-th receiver comprises a pulse correlator for the pulse 
waveform Wpit). The output of the correlator for the i-th chip of the s-th slot is given 

by 

^si = / WpiT)r{T)dT,        i = 0,...,Nc-l, (4.49) 

which is sampled at each chip, Tc. The samples, 4>si, are then fed into a digital 
transvfersal matched filter [35]. In the case under consideration, the weights, at, 
should coincide with the user signature, that is. 

ffli Ji) i = 0,...,Nc-l. (4.50) 
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Thus, the output of the matched filter for slot s is 

2/?^= E'CF^->        s = 0,...,N-l, (4.51) 
1=0 

where the subscript, s, runs over the number of slots per franie. The pulse-position 
demodulation is carried out by applying the maximum-likelihood criterion, that is, 
selecting the largest sample at the output of the matched filter for each frame period, 
TF- Namely, the most likely slot, s'-^\ is 

s(^)=argmax{j/P\s = 0,...,Ar-l} (4.52) 
s 

Finally, the estimate Sjf ^ of the transmitted bit for the j-th user can be obtained by 
means of a threshold detector or decoder. 

4.3.3 Theoretical Bit-Error Rate 

In this section, we analyze the BER performance of the MA-PCTH scheme in the 
presence of AWGN. The SNR (signal-to-noise ratio) is defined by Et/No, where Eb is 
the energy per user bit, and No is the AWGN single-sided power spectral density with 
cTn = No/2. Without loss in generality, system performance is considered to be form 
the perspective of user 1 in the presence of multiple access interference introduced 
by the (A'^u -1) other users. The cross-correlation value with each user is normalized 
to the auto-correlation value of user 1. A detailed analysis for the two- and three- 
user cases follows as well as a general BER expression for an arbitrary number of 
users. The baseline behavior is represented by the single-user PCTH scheme. As 
discussed in Sec. 4.2, maximum Ukelihood receiver coincides with orthogonal JV-ary 
PPM (AT = 2^+^). 

Two-User Case 

For each frame, two users can either transmit in difi'erent slots or in the same slot. 
By denoting these mutually exclusive events with A and B, respectively, then the 
probability of detecting user 1 in the wrong slot, Pe, is given by 

Pe = P(error\A)P{A) + Pierrar\B)P{B), (4.53) 

where if each user's transmitted symbol is equally likely to be in each of the AT slots, 

N-1 
PiA) = 

N 

PiB)-j^. (4.54) 

P{A) and P{B) axe the probabilities that the two users transmit in different slots 
(event A) and the same slot (event B), respectively. P{error\A) and P{error\B) 
are the probabilities of error given each of these events. P{error\A) is obtained 
by modifying the symbol error probability of N-axy orthogonal signaling given in 
Eq. 4.35 by considering that user 1 and user 1 do not transmit in the same slot. 
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Pierror\A) =-^ T h - ${y - ^/2Sl-i2)Hy)^"''] e"^"""^' dy,      (4.55) 
V27r y_oo '• ■' 

where ^ 

#(a;) = -^ I    e-^dt. 
V27r J-oo 

Si = El/No is the SNR of user 1, with transmitted energy Ei, and 

^,= 5J'cf)cf) (4.56) 
1=0 

is the periodic cross-correlation between user 2 and user 1, the user of interest. 
Similarly, P{error\B) is obtained by considering that user 1 and user 2 transmit 
in the same slot, 

PierrarlB) = -^ /°° fl - Hyr''] e-'^^^-'^'^y. (4.57) 

Combining Eqs. 4.53, 4.54, 4.55, 4.57, the average probability of symbol error for 
two users is, 

Three-User Case 

If three users are present, all three can transmit in different slots (event denoted by 
A), all three can transmit in the same slot (event B), or each of the three possible 
pairs of users can transmit in the same slot (events Ci2,C23,Ci3). Specifically, Cy 
corresponds to (isers i and j transmitting in the same slot and the remaining user 
transmitting in a different slot. The average error probability, Pe, of detecting user 
1 in the wrong slot is given by: 

Pe = P{error\A)PiA) + P{error\B)P{B) + P(error|Ci2)P(Ci2) + 

+P(error|C23)P(C23) + P(error-|Ci3)P(Ci3) (4.59) 

Assuming all users transmit independent and identically distributed binary data, 

P(Cl2) = P(C23) = P(Cl3) = ^^. (4.60) 

P{error\A) is obtained by modifying the symbol error probability of A'^-ary orthog- 
onal signaling in Eq. 4.35, by considering that users 1, 2 and 3, each transmit in 
different slots. 
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P^err\A) = -^ y"°° [l - # (y - VlSTia) # (j/ - V^S^^s) ^{yf''] 

'■dy (4-61) 

\/27r. 

where 

7j 
1=0 

(4.62) 

denotes the periodic cross-correlation between user 1 and user j. Note that increas- 
ing 73 decreases the value of ^ in the integrand, thus increasing the error probability. 
On the other hand, Pierror\B) is obtained by considering that the interference due 
to user 2 and user 3 appears in the same slot occupied by user 1. 

Plerror '"-;i/.:h *'»'""'] e ^ dy (4.63) 

The efiFect of users 2 and 3 transmitting in the same slot as user 1 can be readily seen 
from Eq. 4.63 as effectively improving the SNR and decreasing the error probability. 

The probability of error for the remaining events C12, C23, and C13 can be 
calculated using 

P{err(yr\Cij) = -^ T \l-$(y- V^S^ya) ^iy)"" '1 
v27r J-00 '■ 

(v-v'Sg7(l+7s))' 

(4.64) 

where -yd denotes the total cross-correlation of users transmitting in the same slot, 
but different from the slot occupied by user 1, and 7^ indicates the total cross- 
correlation of users occupying the same slot as user 1. Then, P{error\Ci2) is found 
by setting {jd = 73,7^ = 72}, P(error|Ci3) is found by setting {-yd = 72,7^ = 73}, 
while P{error\C23) can be obtained by setting {fd = 72 + 73,7s = 0}- 

General Case 

For JVu users let us generalize the previous considerations to the following interfer- 
ence event denoted by C. There are n slots indexed by i = 1,... ,n, different from 
the slot used by user 1, and slot i contains Oi interfering (constructively) users. The 
slot occupied by user 1 receives contributions from 

■ Ni=Nu-l-^ai (4.65) 
1=1 

interferers and all the other slots are not used. The probability that user 1 is detected 
in the wrong slot is given by [36] 

P{error 
1     /■ l-ji^f   J/-^/2S^£7 

(i,fc) 

fc=i 
^{y) 

N-l-n 

•exp ■li'-'^Hf')) 
(4.66) 
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where 7^"''^^ represents the cross-correlation between user 1 and the interferer in- 
dexed by k, in the slot indexed by i, while 7'*^' is the cross-correlation between the 
interfering user indexed by k, and user I. 

In order to calculate the average probability of error in the general case, we 
need an expression for the probability of each the possible interference events. The 
average probability of error is 

Fe = P(error\A)P{A) + P(error\B)P{B) + P{C'). (4.67) 

Again, A denotes the event where all users transmit in the same slot, B is the event 
where all users transmit in different slots, and C' denotes the collection of all other 
interference events. It follows that 

PiA) - ^^ ~ ^^^^ - 2) ■ • • (JV - {Nu - 1)) 

P(B) = Artr- (4-68) 

Moreover, 

P{error\A) = -^ /       1 - ^y)''-''^ U^iy- \^^7.-) e        ^       dy, 

(4.69) 
1        /-oo   r „   ,-,        (v-v^Sr(i+Ef3;7,))^ 

P(error\B) = -^ /      11 - ^(2/)"^"'   e"^ ' ^    dy, (4.70) 

where again 7^ denotes the periodic cross-correlation between users 1 and j. In 
addition, 

P(C') = Y^ P{error\C)P{C), (4.71) 
ce c 

where C indicates the set of all interference events, except A and B. If the users 
are equicorrelated, P{C') can be calculated as the weighted average [28] of the 
probability of error of all events in C, 

A=l   0^=2 02=2 ai=2   \     ^  /    \ ' / 

f ^" ~ "'"•■•""'-') •(iV-l)(7V-2)... (AT-(iV„-EaO-(A-l)(^-73) 

{Mh~) ■ 'K ■ [°i^'''=(^i' ^2,..., ao) + a2PrMuA\,..., /3o) + .. (4.74) 

+aoPr^{Ai,A2,...,al)^.7Z) 

where 

ao = min{Nu - 1, JVu - E ''O- (4-76) 
i=2 

/32 is the number of slots in which two users transmitted, and ySa is the number of 
slots in which three users transmitted, etc. From the perspective of user 1, the user 
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of interest, equicorrelated interferers can be accommodated by assigning the same 
code sequence with the desired cross-correlation to each interferer. This is done 
for simphcity rather than finding a series of sequences that are equicorrelated. In 
Eq. 4.72, 

A«a. = L(^)J (4-77) 
is the maximum number of different possible interference events within a single 
frame. This occurs when ^ pairs of users interfere. The number of users who 
transmit in slots with no interfering users is 

A 

ao = Nu-J2'''- (4.78) 
i=l 

In Eq. 4.72, the events Ai,...,Ax correspond to oi users transmitting in the same 
slot, a2 users transmitting in the same slot but different than the Ai users, etc. The 
superscript 1 indicates that user 1, the user of interest, is included in that set. 

For all cases, in order to calculate the BER, we need to convert symbol errors to 
bit errors. Namely, we convert the probability of detecting user 1 in a wrong slot, 
Pe, to the bit error probability Pb. The errors which consist of confusing the slot 
used by user 1 with any of the other N — 1 slots are equiprobable and occur with 
probability 

p P _£j_ =     f' (4.79) 
N-l      2^-1' ^      ' 

where logj N = M coded bits per symbol. Let's assume without loss of generality 
that the binary information digit transmitted by user 1 is zero; then the probability 
that the receiver makes a bit error is the probability of confusing the slot where 
user 1 is transmitting with any of the last N/2 slots in the frame [4]. Thus, 

nM — l p 

Example: Four-user case 

The probability of detecting user 1 in the wrong slot can by subdivided into the 
following cases: 

1. The four users transmit in the same slot, with probability 1/N^. 
2. All users transmit in different slots, with probability {N -1){N- 2)(N-3)/N^. 
3. Two users transmit in the same slot and the two remaining users transmit in 

independently different slots, with probability {N - 1){N - 2)/N^. 
4. Three users transmit in the same slot and the remaining user transmits in a 

different slot, with probability {N - l)/N^. 
5. Two users transmit in the same slot and the two remaining users transmit in 

the same slot different from the previous two, with probability [N — 1)/N^. 

If the cross-correlation between user 1 and all other users is not equal, then each of 
the above events must be subdivided further. For instance, the probability that two 
users transmit in the same slot and the two remaining users transmit in the same 
slot, different from the previous two (case 5), is the sum of the probabilities that: 
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5a Users 1 and 2 transmit in the same slot and users 3 and 4 transmit in the same 
slot different from the other users, with probability |(A^ - 1)/N^. 

5b Users 1 and 3 transmit in the same slot and users 2 and 4 transmit in the same 
slot different from the other users, with probability |(7V - 1)/N^. 

5c Users 1 and 4 transmit in the same slot and users 2 and 3 transmit in the same 
3 slot different from the other users, with probability ^{N - l)/N 

The probability of error for each of these events can be evaluated by applying 
Eq. 4.66. For example, the probability of case (5a) is obtained by setting n = 1, 
Qi = 2, 7^^'^^ (resp. 7^^'^') being the cross-correlation between users 1 and 3 (resp. 
the cross-correlation between users 1 and 4) and 7'^' the cross-correlation between 
users 1 and 2. 

4.3.4 Simulation Results 

This section reports the simulation results for the MA-PCTH scheme and compares 
them with the theoretical predictions. The results of the analysis are presented in 
terms of BER probability versus the signal-to-noise ratio at the receiver, expressed 
indB. 

Pig. 4.14 shows the simulated and analytical BER for single-user PCTH. The 
analytical calculation uses the method outlined in Sec. 4.3.3. We used M = 8 bits 
corresponding to N = 256 PPM levels, with Nc - 32 chips/slot. As mentioned in 
Sec. 4.3.3, the BER performance coincides with orthogonal 256-PPM. This is the 
baseline from which to compare the multi-user cases since it represents the best 
performance that could be possibly achieved using the optimum frame-by-frame 
receiver. For multiple users this would correspond orthogonal signature sequences 
or zero cross-correlation between signatures. 

In each of the multi-user cases a unique 32-bit signature sequence was assigned 
to each user. The binary sequences that were chosen were randomly selected. The 
only constraint imposed on the sequence selection process was that each sequence 
contain an equal number of ones (specifically 16.ones and 16 zeros). This maintains 
a constant energy across all users. The randomly selected sequences have periodic 
cross-correlation values to user 1, the user of interest, of 0.3750, 0.4375 and 0.5625. 
The family of curves in Fig. 4.18 shows the two-user simulated performance with 
each of these cross-correlation values. Note how the BER performance improves 
with decreasing cross-correlation (see Eq. 4.58). As the cross-correlation of the sec- 
ond user's sequence increases, the probability of choosing the slot in which user 
2 transmitted increases, and so does the intended user's probability of error. This 
is consistent with the fact that orthogonal signaling results in the best possible 
BER performance for this receiver. Fig. 4.19 shows a comparison of the simulated 
performance versus the theoretical predictions for each cross-correlation value. 

Fig. 4.20 shows the analytical BER performance using Eq. 4.66, and simulated 
performance of four users. The three interfering users have cross-correlation values 
to user 1 of 0.3750, 0.4375 and 0.5625. 

Note that, as pointed out in [37], depending on the value of the cross-correlation 
and/or with enough users an error floor in the BER can develop. Fig. 4.21 shows the 
simulated performance of the same four-user case compared to each of the two-user 
cases previously discussed. The four-user system performance is dominated by the 
user with the highest cross-correlation. 
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Fig. 4.18. Simulated BER performance of MA-PCTH with two users for various 
values of cross-correlation. Note that the performance improves with decreasing 
cross-correlation (from [28]). 

Finally, Fig. 4.22 shows the BER performance of the simulated system as a 
function of the number of users, Nu- In the simulated two-user data, a sequence 
with a cross-correlation of 0.5625 is used. For the four-user case the cross-correlation 
values are 0.3750, 0.4375 and 0.5625, with respect to user 1. In the eight-user case, 
two users have a cross-correlation value of 0.3750, three other users have a value of 
0.4375, and the remaining two interfering users a value of 0.5625. As the number of 
users increases, the BER performance is degraded. This is true provided that the 
cross-correlation increases with an increasing number of users, as in this case. 

4.3.5 Bit-Error Rate Floor 

If only two users are present, for each frame, they transmit either in the same slot 
or in diflFerent slots. The maximum interference, due to the total cross-correlation, 
7T, has just a single term, that due to user 2. If, as required to discriminate among 
different users, the cross-correlation between users 1 and 2 is less than unity, no 
error floor is present. For more than 2 users, the condition for the existence of an 
error floor is 

IT 
3=2 

>1. (4.81) 
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Fig. 4.19. Simulated vs. analytical BER performance of MA-PCTH with two users 
for various values of cross-correlation compared to single-user PCTH (from [28]). 
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Fig. 4.20. Simulated vs. analytical BER performance of MA-PCTH with four users. 
Users 2, 3, 4 have cross-correlation values to user 1 of 0.3750, 0.4375, and 0.5625, 
respectively. Note that an error floor in the BER develops (from [28]). 

If the users are equicorrelated with 7^ = 7 = 0.5625, three users is the minimum 
number for which an error floor develops, since 7T = 1.125. The event causing the 
error floor is C23 in Sec. 4.3.3. The error floor occurs because 

P{error\C23) -> 1 as SNR -* 00. (4.82) 

This can be seen from Eq. 4.64 which for C23 has 7d = n/T = 1.125, and 7^ = 
0. If three or more users are present, the value of the error floor is the sum of 
the event probabilities, P{C'), where the condition of Eq. 4.81 is satisfied. For the 
equicorrelated three-user case with 7^- = 7 = 0.5625, the value of the error floor is 
the corresponding coefficient, P(C23) = (AT - 1)/N^. Converting from symbol error 
rate to BER, the error floor has the value 

p3—tiser 
■ e,floor = P{C2Z) = 

{N/2)iN-l) 
{N - l)(iV2) 

= 1.953S - 03 (4.83) 

where N = 2*^"*"^ Fig. 4.23(a) shows the simulated and calculated performance for 
this three-user case. 

Eq. 4.72 can be used to calculate the expected performance of the four-user 
equicorrelated case. After some simplification, the error floor can be found to be 
equal to 
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Fig. 4.21. Simulated BER dependence on the cross-correlation. For the four-user 
case the cross-correlation values are the same as in Fig. 4.20 (from [28]). 

p4—user 
e,floor P(Cl,23,4) + P{CI,2M) + i'(Cl,24,3) + P(Cl,234) 

= fW3.) L(N-l){N-2) 

= 5.82E - 03, 

m + iN-2) 

(4.84) 

where the subscript notation indicates which users are transmitting in the same slots 
and which are in different slots. For example, P(Ci,2,34) indicates that users 3 and 
4 transmit in the same slot while users 1 and 2 transmit in different slots from each 
other and different from users 3 and 4. In Fig. 4.23(b) the corresponding simulated 
and calculated BER performance is shown. 

It follows that the error floor can be expressed formally as 

Pe,floor = Ps{C ) (4.85) 

4.4 Conclusions 

The success of MA-PCTH as a communication system depends on how many users 
can be supported at a sufficiently low error rate and a sufficiently high data rate. In 
this chapter we have shown that the BER performance of single-user PCTH is the 
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Fig. 4.22. Simulated BER dependence on the number Nu of users. In the two-user 
case the cross-correlation equals 0.5625. In the four-user case, the cross-correlation 
values are 0.3750, 0.4375 and 0.5625, with respect to user 1. In the eight-user case, 
two users have cross-correlation 0.3750, three other users 0.4375, and the remaining 
two interfering users 0.5625 (from [28]). 

same as N-ary orthogonal signaling {e.g. N-PPM). For multi-user communications, 
there are many parameters that need to be optimized in order to produce the best 
overall system performance. These include the length of the signature sequences, 
the cross-correlation between sequences, the dimensionality of the pulse-position- 
modulator and the system data rate capacity. In this work, we have investigated 
the influence of the periodic cross-correlation between the generic user and each 
of the other users on the BER, in a synchronous system. Our analysis indicates 
that the highest cross-correlation amongst interferers tends to dominate the BER 
performance. For future work, in order to improve the BER performance, one needs 
to find sets of signature sequences exhibiting constant cross-correlation between any 
two sequences in the set, or that are bounded by an acceptable level. An interesting 
variation of the proposed scheme is the non-slotted MA-PCTH case, where NcTc > 
Ts. In this case, the length of each user's sequence extends through one slot into 
an adjacent slot causing intrarsymbol interference. When users interfere with each 
other, they no longer do it in a unique way because there is more than one way that 
the sequences can overlap. Aperiodic cross-correlations must now be considered. The 
possible benefits are a potentially improved data rate, simpler implementation and 
the potential to support more users albeit with a possibly higher BER. 
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Fig. 4.23. Simulated and analytical BER performance of the three-, and four-user 
cases of MA-PCTH with yj = 0.5625 (from [37]). 
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Summary. This paper presents a tutorial and overview of the interplay among 
nonlinear dynamical system theory, ergodic theory, and the design and analysis of 
spreading sequences for CDMA communication systems. We first address some mo- 
tivational factors in information theory, communication theory, and conimunication 
systems to chaotic communication systems. Then we consider some beisic issues in 
CDMA communication system. Next we summarize some properties of nonUnear dy- 
namical system and ergodic theories needed for this study. Some history and deteiils 
on the design and analysis of optimum chaotic asynchronous and chip-synchronous 
spreading sequences for CDMA systems are given. These optimum spreading se- 
quences allow about 15% more users than random white sequences/Gold codes in 
an asynchronous system and 73% more user in a chip-synchronous system. Compar- 
isons of performance of these system under ideal and practical conditions are also 
made. Finally, some brief conclusions are given. 

5.1 Introduction 

In the 19th century and first half of the 20th century, practical communication 
systems included: digital treinsmission in telegraphy over wires and radio over free- 
space propagation; analog transmission telephony over wires; and a.m./f.m. radio 
broadcasts over free-space propagation. These system designs were ad hoc and gov- 
erned mainly by available hardware technology. As new hardware devices came 
along (e.g.,vacuum tube amplifier; transistor; microelectronic chip/microprocessor; 
microwave ampUfier; laser, etc.), new communication systems came into existence. 
As communication systems became more complex, there were greater needs for 
systematic treatments. Since the 1950s, information theory and statistical deci- 
sion/estimation theory have provided the analytical tools for the successful analysis 
and design of advanced comrhunication systems. Today, communication theory and 
systems are mature. Any proposed new communication concepts and technologies 
have to compete and justified with the existing information and communication 
theories and systems. 
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The basic purpose of communication is to provide reliable transmission of in- 
formation utilizing minimum bandwidth. Information theory provides the math- 
ematical theory of information processing and transmission using efficient modu- 
lation/demodulation in conjunction with coding/decoding. Communication theory 
provides the concepts and models for analysis and design of communications. Com- 
munication system deals with implementation at the hardware system and sub- 
system levels of communications. There is a close interplay among these three well- 
developed but different disciplines of information theory, communication theory, and 
communication system. 

Pecora and Carroll [15] in 1991 showed that two chaotic systems can be self- 
synchronized. This rather remarkable discovery has caused much interest and created 
the research field of "chaotic communication." Many papers motivated by this work 
have' been published over the last ten years. Chaos theory is a branch of advanced 
nonlinear mathematics with a history of over 100 years. Chaos and fractals are 
intellectually challenging with many not immediately obvious properties and have 
been popularized by Lorenz, Mandelbrot, others in the last 30 years. 

Many workers in chaotic communication (particularly in the early years) were 
fundamentally more interested in the synchronization issue in nonlinear circuit and 
mathematical aspects of the chaotic system and not really in the communication 
system aspects. A simple justification of this claim is that most publications in 
"chaotic communication" appeared in physics/mathematics/ circuit/system jour- 
nals and not in information theory/communication theory/communication system 
journals. A meaningful question is how many chaotic communication concepts have 
(or potentially able to be) translated to practical communication systems? 

Perhaps one can categorize "chaotic communication" into two classes. In one 
class, some chaotic properties not necessarily implementable nor competitive with 
conventional communication systems (e.g., systems that are essentially only base- 
band systems that have no equivalent carrier frequency translatable version; systems 
that utilized some artificially imposed nonlinearity with interesting chaotic proper- 
ties; systems that are not competitive to conventional communication systems in 
terms of SNR; data rate; complexity; interference rejection, etc.) In another class, 
certain chaotic communication systems only use some chaotic properties to replace 
some functional parts of conventional communication systems; these systems may 
still be implemented, analyzed, and shown to have some advantages with respect to 
their conventional equivalent counterparts (e.g, a chaotic pulse-position-modulation 
system (PPM) is a PPM system; a FM-DCSK system is a FM digital comm sys- 
tem; a laser communication system that exploits some intrinsic chaotic property is 
an optical communication system; a chaotic generated sequence CDMA system is a 
CDMA system; etc.) 

We will not dealt further with the above mentioned issues of chaotic communi- 
cation. In recent years, there have been various special issues and overview papers 
attempting to address these issues. The purpose of this paper is to consider chaotic 
generated sequences for CDMA system applications. Section 2 provides a summary 
of the basic operations of a CDMA digital communication system. Section 3 consid- 
ers some basic properties of chaotic spread spectrum sequences. Section 4 considers 
a CDMA system model. Section 5 constitutes the heart of this paper and deals with 
the design and analysis of chaotic spread spectrum sequences. Section 6 discusses 
some aspects of ergodic theory and nonlinear dynamical system relevant to chaotic 
spread spectrum sequences. Section 7 presents results on design of optimum chaotic 
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spread spectrum sequences. Section 8 provides a compaxison of performance of some 
chaotic spread spectrum CDMA systems under ideal and non-ideal environments. 
Section 9 considers some implementational issues and the construction of optimum 
chaotic spread spectrum sequences from the well known Gold codes. Section 10 con- 
siders the acquisition time associated with these optimum chaotic spread spectrum 
sequences. Section 11 provides some brief conclusions. 

5.2 Introduction to CDMA Communication System 

There are three well-known multiplexing methodology used in modern digital com- 
munication systems. In a frequency-division-multiplexing-access (FDMA) system, 
the entire allocated frequency band is divided into various frequency subbands, and 
an individual user is given a dedicated subband. This is the oldest multiplexing 
method, and it is conceptually simple and has been used in telephony, digital mi- 
crowave systems, etc. Unfortunately, FDMA is not very flexible and does not make 
use of the total available bandwidth efficiently relative to the total data transmission 
rate. In time-divivion-multiplexing-access (TDMA), each user is assigned a time slot 
with the usage of the full bandwidth. The advantage of the TDMA system, is that it 
allows possible dynamic user assignment and has been used in many satellite com- 
munication systems as well as celllular telephony (e.g., GSM-2G system). A TDMA 
system is more efficient in bandwidth efficiency than a FDMA system. In a code- 
division-multiplexing-access (CDMA) spread spectrum (SS) system, the information 
data of bandwidth R = 1/T Hz is modulated (spread) by a pseudo-random (PN) 
spreading sequence code with a smaller chip duration of Tc = T/PG to a larger 
bandwidth oi B = R x PG, where T denotes the data symbol duration and PG 
denotes the Processing Gain. As we will discuss in more details, a PG much greater 
than one allows significant rejection of multiple access interferences from other users 
in the same full frequency band. CDMA digital systems were first used for military 
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Fig. 5.1. Block diagrams of a BPSK-CDMA spread spectrum transmitter. 
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Consider the CDMA methodology implemented on a binary-phase-shift-keyed 
(BPSK) digital communication system. Fig. 5.1 shows the block diagrams of a 
BPSK-CDMA transmitter system marked with (l)-(5) corresponding to equations 
(5.1)-(5.5) respectively. Waveforms also marked with (l)-(5) corresponding to these 
equations are shown in Fig. 5.2. Let the binary data be denoted by 

m{t) = bk = ±l, kT<t<{k + l)r, (5.1) 

and the carrier waveform be denoted by 

g(t) = x/(2P)cos(wof), (5-2) 

where P is the carrier power and /o = wo/(27r) is the carrier frequency. Denote the 
modulated waveform by 

s{t) = q{t)m{t) = yf{2P)m{t) cos(wot). (5-3) 

Let the SS sequence be denoted by 

a(t) = ak = ±hkTc<t<{k + l)Tc, (5.4) 

while the SS coded waveform is given by 

r{t) = s{t)a(t) = y/{2P)m{t)a{t) cos{uot). (5.5) 

The waveform r{t) is transmitted and is received by the BPSK-CDMA receiver 
system with the associated waveforms marked by (5')-(9) corresponding to equations 
(1.5')-(5.9) respectively as shown in Fig. 5.3. Corresponding received waveforms axe 
shown in Fig. 5.4. Denote the received waveform by 

r'{t) = r{t) + Iit) + n{t), (1-5') 

where r{t) is the transmitted waveform, I{t) denotes the other SS coded waveforms 
in the CDMA system, and n{t) denotes the channel noise. Denote the phase-locked 
locally generated SS code sequence by 

a'it) « a{t) =ak = ±1, kTc < t < (k + l)Tc. (5.6) 

Denote the despreaded SS decoded waveform by 

u{t) = r'{t)a'(t) « y/l2P)m{t) cos{wot). (5.7) 

Denote the phase-locked locally generated carrier waveform by 

q'(t)KCocos{ujot). (5.8) 

Finally, the demodulated binary data using a matched filter is given by 

m'{t) =  r u{t)q'{t)dt « m{t) = bk=±l, kT<t<{k + 1)T. (5.9) 
Jo 

We note, the waveforms on the r.h.s. of (5:6)-(5.9) are valid in the high signal- 
interference-ratio (SIR) and high signal-noise-ratio (SNR) scenarios. Indeed, in the 
absence of other users' mutual interferences and additive channel noise, the w sign 
becomes the = sign in these equations. We also note, the operations in (5.9)-(5.5') 
in the CDMA receiver are inverse operations of (5.1)-(5.5) in the CDMA trans- 
mitter. Of course, in the absence of other users' mutual interferences, there is no 
need in deploying the CDMA methodology on top of a conventional BPSK digital 
communication system. 
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Fig. 5.2. Transmitter waveforms of a BPSK-CDMA spread spectrum system. 
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Fig. 5.3. Block diagrams of a BPSK-CDMA spread spectrum receiver. 
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Fig. 5.4. Receiver waveforms of a BPSK-CDMA spread spectrum system. 

5.3 Chaotic CDMA Communication System 

Many investigations on spread spectrum communications have addressed direct se- 
quence code division multiple access (DS-CDMA) systems, where all users transmit 
on the same band at the same time and are distingushed only by means of a code sig- 
nature of a spreading sequence. System performance of a DS-CDMA communication 
system using the single-user matched filter receiver critically depends on the auto- 
correlation and cross-correlation of the spreading sequences. As is well known, the or- 
thogonal sequences are optimal for the downhnk of wireless communication systems, 
where all users are synchronous, since the multiple-access interferences (MAI) from 
other users are absent. It is inevitable, however, that the cross-correlations among 
the spreading sequences are nonzero for the uplink channel because of asynchronism. 
In this paper, we consider the design of the spreading sequences for two DS-CDMA 
system models of chip-synchronous CDMA (CS-CDMA) and asynchronous CDMA 
(A-CDMA) systems for uplink operations. 

Earlier efforts in using chaotic dynamical systems/signals for CDMA applica- 
tions have been studied [19] [12] [1]. By treating the spreading sequences for an 
A-CDMA system as random processes and assuming they are independent and sta- 
tionary, Mazzini et al. [14] found the ensemble-averaged auto-correlation function 
that minimizes the expected interference-to-signal ratio under the Standard Gaus- 
sian Approximation (SGA) and proposed a nearly optimal ftinon/sequence generator 
using a piece-wise affine map (PWAM). However, this class of chaotic map genera- 
tors may have practical implementational difficulties due to the need for high slope 
in the map as well as a finite-precision computational problem if the slope of map is 
some power of 2. [6] derived general results on the partial auto-correlation function of 
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the optimal spreading sequences for CS-CDMA and A-CDMA systems to minimize 
the average error probability under the SGA condition without the assumption of 
independence and stationarity on the spreading sequences, and also provides a prac- 
tical implementation of the optimal real-valued spreading sequence from a chaotic 
dynamical system, particularly a chaotic (ergodic) dynamical system with Lebesgue 
spectrum. 

5.4 CDMA System Models 

We consider a CDMA system with K users and spreading factor N. The received 
signal is 

K 

r{t) = J2 s^*"' (* - -^^"^) + "(*). (5' 10) 
k=l 

where s^*) (i) = Re{b^''^ {t)a^'''> {t)exp{iJct+<f>i'''^)} is the transmitted signal from the k- 
th user, n{t) is the white Gaussian noise with two-sided spectral density A^o/2, 6^*^ (i) 
and a^''\t) are the data and spreading signal, respectively, Wc is the carrier frequency, 
and (f>^'°^ is the phase. The data signal b^*^(f) is a sequence of ±1 rectangular pulses 
with a duration of Tt- The spreading sequence has a period N, and is composed of 

rectangular pulses with duration Tc and chip amplitude oj such that J2jS^ cij = 

1. We assume that N = Tt/Tc, and r^*^ is the time delay. 
Since we are concerned with relative phase shifts modulo 2ir and relative time 

delays modulo Tb, there is no loss of generality in assuming (^^'' = 4>^Q' - UCT'-^^ = 0, 
r**) = 0 for the desired receiver i, and Tc = 1 and considering only 0 < 0^*^ < 2TT 

(assumed to be uniformly distributed in [0,2n)), and 0 < r^''^ < AT for fc / i. 
The output of the single-user matched filter at the i-th receiver is 

Zi = 2 f     r{t)ai{t) cos{ujct)dt 
Jo 

= b^^ +f^I^''\b^''\4>^''\r^''^)+Z<^^ni, (5.11) 
k^i 1=0 

where rji is the equivalent Gaussian noise in the Z-th chip with E[T]I] = 0 and 
E[riirij] = No5{i-j), and Ef^^^^''^(&^'°^'^^*^-^^*^) 's the MAI. The channel SNR 
is given by SNR = I/NQ. 

The interference term /(*^(6'''',(^^*^T^'°^) due to the fc-user has been found [16] 
to be 

/('=>(6W,«i(*',T('=)) = ib^y.RkAr^'^) + 6^'=^^fc.i(T('=)))cos(<^('=)), (5.12) 

where Rk,i{'^) and Rk,i{'^) ioi 0 < I < r < I + 1 < N, aie given by 

Rk,i{r) = Ck,i{l -N) + [CkAi + 1-N)- Ck,i{l - N)]{r - I), 

^,,,(T) = Cfc.i(Z) -I- [CkAl + 1) - CkAlW - 0. (5-13) 

where Ck,i{l) is the partial cross-correlation between the fc-th and the i-th user and 
is defined by 
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a,i(0 = ' 

E   afa«„ 0<Z<iV-l 
j=0 

AT+i-i (5.14) 

3=0 

0, Kl > AT. 

If r'''^ for A; 7^ i is a discrete random variable uniformly distributed in {0,1,2,..., iV- 
1}, the system is called the chip-synchronous CDMA (CS-CDMA) system while the 
system is called the asynchronous CDMA (A-CDMA) system if r^*"^ is a continuous 
random variable uniformly distributed in [0, A''). 

5.5 Derivation of Optimal Sequences 

5.5.1 Asynchronous CDMA 

The overall interference variance for the i-th user from all other users can be com- 
puted [16] as 

K 

= 6^ E   E  f2CM(0 + CUl)CkAl + 1)]- (5-15) 

With the SGA assumption, the error probability of the i-th user is given by 

where Q{.) is the complementary standard Gaussian probability distribution. The 
evaluation of the error probability of an A-CDMA system based on the moment space 
bounding technique and its relationship to the SGA assumption were discussed in 

[22]. 
Using the following identity 

AT-l N-1 

Y.   C^,y{l)C..y{l + ri)=   Y.   <^x,x(OC„,„a + n) (5.17) 
l=l-N l=l-N 

given in [17] and the trivial identity C^l) = Cx,x(0 = C^,4-l), (5.15) can be 
simplified to 

'^^W = ^ E[2C,(0)a(0) +4 X; Ckil)a{l) 
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N-l 

+  ^   Ck{l)Ci{l + l)] 
l=l-N 

= WN E[2Cfc(o)a(o)+4 x; c,{i)a{i) 

JV-1 

+ Y, Ck{l)Ci{l + 1) + Ck{l + l)Ci(Z)]. (5.18) 

The importance of (5.18) lies in the fact that a\{i) can be cbmputed from the auto- 
correlation functions alone; the cross-correlation functions are not needed. Moreover, 
the bit error probability is independent of the distribution of the spreading sequences 
due to the SGA assumption. 

Since the Q-function is convex, the lower bound of average error probability of 
all users in system can be attained by assigning the same interference variance to 
every user. This can be done with Ci(Z) = Ck{l) = C{1) for all i,k,l. With the 
normalization Ci(0) = 1, we minimize the average error probability by minimizing 
the interference power 

<A = ^[2 + 4^ <^'W + 2 E C{l)C{l + l)]. (5.19) 
/=1 (=0 

This is a positive quadratic form in C{1) whose unique minimum is achieved when 
da^/dC{l) = 0 for i = 1,2,..., AT - 1, that is when 

4C(0 + C(i 4-1) + C(/- 1) = 0,        VZ = 1,2,...,JV-1. (5.20) 

The solution to (5.20) is given by 

^fc(0 = (-l)'^7^?i^7^. Z = 0,l,2,...,iV-l,Vfc, (5.21) 

where r = 2 - \/3. Substituting (5.21) into (5.19), we obtain the minimum interfer- 
ence power [6] as 

_2 ^/^{K -1)    r -2N       J2N — r (5.22) (TA-opt -        g^       ^_2N + ^2W _ 2 • 

The ensemble-averaged partial auto-correlation function obtained in [14] when the 
spreading sequences are assumed to be stationary and independent random pro- 
cesses is identical to the deterministic constant partial auto-correlation vector de- 
rived here. Note that when I < N, Ck{l) w (-r)' which decays exponentially 
with alternative sign. Moreover, the minimum interference variance is given by 
o\-opt = \/3(-ft' - 1)/6A'' as N is large, which increases by 15% the number of 
users achieved with white sequences, i.e., {K — 1)/3N. 

5.5.2 Chip-Synchronous CDMA 

The variance of MAI for CS-CDMA system with T^*^ uniformly distributed in 
{0,1,2,..., AT - 1} for k / i is computed in a similar way to (5.15) and given 
by 
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K   N-1 

27V 
k^fii   1=0 

^      K     N-1 

= 2^EE^M(0 

^^ k^i l=l-N 

(5.23) 

where the last equaUty is due to the identity in (5.17). Similarly, the solution that 
minimizes the (5.23) is given by 

Ck{l)^S{l),    Vk. (5.24) 

That is, the optimal sequences for CS-CDMA system are the random white sequences 
and the corresponding minimum MAI power is 

2 K-1 
<^c-opt —    2JV   ' (5.25) 

which decreases by 73% and 50% the number of users achieved with optimal se- 
quences and white sequences for an A-CDMA system, respectively. 

5.6 Ergodic Dynamical Systems 

5.6.1 Ergodic Theory 

The second-order time-averaged statistic of spreading sequences is needed for se- 
quence design and performance analysis. For a spreading sequence generated by a 
deterministic dynamical system, the performance can be computed analytically or 
numerically by using the BirkhofT individual ergodic theory which is restated as fol- 
lows: 

Theorem 1. (4-2.4 in [13]) Let (X, A, n) be a finite measure space and S : X >-^ X 
be a measure preserving and ergodic transformation. Then, for any integrable f, the 
average of f along the sequence generated by S, that is {S'-''^x)}kLo for any given 
"initial" x e X, is equal almost everywhere to the average of f over the space X; 
that is, 

lim i J2 fi^^^H^)) = -^ I fi^Md^)       «•«■ (5-26) 

The use of this theorem allows us to evaluate the auto-correlation function of a 
sequence generated by any measure-preserving ergodic transformation. As an exam- 
ple of measure-preserving and ergodic transformation, consider the tent map S{x) 
defined by 

S{x) = 1 - 2|x|, |a;| < 1. (5.27) 



5 Optimum Spreading Sequences       137 

The uniform measure is invariant for this transformation; the auto-correlation func- 
tion of the sequence generated by the tent map S{x) can be evaluated by 

< C{1) > = <-f2 S{xj)Sixj+i) > 

= \ f   xS^'\x)dx 
2 7-1 

= 1^(0 > (5-28) 

where <> denotes the ensemble average with respect to the initial condition xo 
under the corresponding invariant measure. 

Another ergodic transformation, the n-th degree Chebyshev polynomials defined 
by Tn{x) = cos(narccos(a;)) over the interval [-1,1], has been considered as a 
sequence generator for synchronous CDMA system [21]. Examples of Chebyshev 
polynominals are given by 

To{x) = l,    Ti{x)=x,    T2ix) = 2x^-1,    Tsix) = 4x^ - 3x,....        (5.29) 

Adler and RivUn [2] have shown Chebyshev polynomials of degree n > 2 are mix- 
ing and thus ergodic, and their invariant measure is given by p{x)dx — —^^=f ■ 

Furthermore, by investigating the asymptotical stability of the FVobenius-Perron 
operator corresponding to Chebyshev transformations, Chebyshev polynomials are 
shown to be exact and thus mixing and ergodic transformations [13]. 

The Chebyshev polynominals have the orthogonality 

/_ 
' Ti{x)Ti{x')p{x)dx = <5i.,—^, (5.30) 
1 •^ 

where (5i,j is the kronecker delta function such that 

The auto-correlation functions for sequences generated by these Chebyshev polyno- 
mial are given by 

1   " 
< C(0 > = < - y]Tp(a:,)Tp(xj+,) > 

=  I   Tj,{x')T^w{x)p(x)dx 

= ls{l). (5.32) 

5.6.2 Dynamical Systems with Lebesgue Spectrum 

One class of ergodic dynamical systems with special property are those with Lebesgue 
spectrum [3]. These systems, denoted as (^(x), not only have an ergodic invariant 
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measure, but are also associated with a special set of orthonormal basis functions 
{fxj{x)} for Hilbert space L2. This orthonormal basis can be split up into classes 
and written as {fxj{x) : \ € A,j e F}, where A labels the classes and j labels 
the functions within each class. The cardinality of A can be proven to be uniquely 
determined and is called the multiplicity of the Lebesgue spectrum. If Ais (countably) 
infinite, we shall speak of (countably) infinite Lebesgue spectrum. If A has only one 
element, the Lebesgue spectrum is called simple. The important property that these 
particular basis functions fxj have is 

fxjo4> = fxj+i,        WXeAjeF. (5.33) 

That is, all the other basis functions in the same class can be generated from one of 
the basis function by using compositions with powers of the dynamical system (f>{x). 
Furthermore, since the basis functions are orthogonal, every function is orthogonal 
both to every other function in the same class, and to every function in other classes. 

An example of chaotic dynamical system with Lebesgue spectrum is the BernouUi 
shift map 4){x) with invariant measure density p{x) = 1, as considered in [3, 4], and 
defined by 

,, ,      (2x,       0<x< 1/2, ff.oA\ 
'^(^) = {2a:-l,l/2<a:<l. ^^'^^^ 

The associated basis functions for L2 space are Walsh functions and are defined by 

«;i(a;) = 1, 
r-l 

Wk+i{x) = l[sgn{sm'"{2'+\x)},        fc=l,2,..., (5.35) 

where the values of fci, either 0 or 1, are the binary digits of k, i.e., k = YJIZO ^i"^^- 
Thus, this generator can produce random white binary sequences. A two-dimensional 
dynamical systems with Lebesgue spectrum can also be exhibited [3, 4]. 

Another class of chaotic (ergodic) dynamical systems with Lebesgue spectrum 
are the Chebyshev polynomial maps as considered above. In particular, we consider 
the p-th degree Chebyshev polynomial map, i.e., 4>{x) = Tp{x) where p > 2 is 
prime. The associated basis functions for L2([-l, 1]) are also Chebyshev polynomials 
{Ti(x)}g:o- Then, the fx,j{x) can be defined by 

fxA^) = Tx.pJ (^).        VA eA,je F, (5.36) 

where A = {n\n is nonnegative integer and relative prime to p}, and F is the set of 
nonnegative integers. To see this, we consider the composition of </> with one of the 
basis functions: 

fxjo<j,{x) = Tx.pioTp{x) 

= Tx.pi+i (x) 

= hj+ii^). (5.37) 

Note that the basis function fo,j{x) = To{x) = 1 constitutes its own class and the 
basis function we used in (5.32) is the particular case when A = 1. 
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5.7 Chaotic Optimal Spreading Sequences Design 

5.7.1 Sequences Construction for CS-CDMA Systems 

The previous section shows some chaotic dynamical systems that can produce in- 
dependently, identically distributed (i.i.d.) sequences. Therefore, the system perfor- 
mance of CS-CDMA and A-CDMA systems using these sequences is identical to 
the random white sequences with the interference power a^ = {K — 1)/2N and 
cr^ = {K- 1)/3N, respectively. 

5.7.2 Sequences Construction for A-CDMA Systems 

Let us consider a polynomial function G{x) in the Hilbert space L^d—l, 1]) with the 
form 

N N 

G{x) = Y,djT^i^) = Y.^-ryT^i{^),        x e [-1,1], (5.38) 
3=1 J=l 

where j> > 2. Thus, the coefficients of the Chebyshev expansion of G{x) are given 
by 

do = 0,    dj = {-ry    for    l<j<N. (5.39) 

By using ergodic theory the average of G^ along the sequence generated by the 
Chebyshev transformation Tp{.) is given by 

<C(0)> = <i^G'(a;i)> 

=  f   G^{x)p{x)dx 

^ 1 r'(l - r^^) 
2     l-r2 

= A, (5.40) 

and the normalized auto-correlation function of such sequence can be evaluated by 

< C{1) >/A=^<^fl G{xi)G{xi+,) > 

= ^ l'^G{x)G{T^:ix))p{x)dx 

1    ^ 

m=l 

_ r^ (_r)'(l-r^(^-')) 
2A 1-7-2 

l-N _ „N-l 

= (-!)'%_%   • (5-41) 

Thus, with the condition r = 2—\/3, the output sequences {yi, 1/2,. • •, yjv } generated 
by 
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Vj = -7=G{Xj), 

xj+i = Tpixj), (5-42) 

are the optimal spreading sequences for A-CDMA systems. Because of the property 
T j+i{x) = TpoTpj{x), the function G{x) in (5.38) actually is a non-causal finite 
impulse response (FIR) filter fed by the input sequence generated by Chebyshev 
polynomial map Tp{x). This FIR filter can be easily implemented to produce the 
output sequence {yj} [6]. 

When the spreading factor N is large, an alternative practical design is given as 
follows. Since the auto-correlation function of a Chebyshev sequence is a Kronecker 
delta function, we can design the optimal spreading sequences by passing these 
Chebyshev sequences through an infinite impulse response (IIR) low-pass filter with 
a single pole at (—r). That is, 

2/j+i = -rvj + ^/2{\-r■^)xj, 

x,+i = Tp{x,). (5.43) 

The output sequence {2/1,2/2,... ,2/^} of the filter will have an exponential auto- 
correlation function (-r)'. Then either each sequence generated by the same Cheby- 
shev map but starting from different initial condition or generated by a different- 
degree Chebyshev map is assigned to a different user. The sequences designed in 
(5.43) are used for simulation of asynchronous CDMA systems considered in the 

next section. 

5.8 Performance Comparisons of CDMA Systems 

First, we simulate an A-CDMA communication system using optimal and white 
spreading sequences generated by Gaussian, uniform, Chebyshev, and binary random- 
number generators. The simulation results in Fig. 5.5 shows that the error proba- 
bility is independent of the distribution of the spreading sequences, and that the 
optimal sequences are better than random white sequences, which justifies our de- 
sign. Particularly, the performances using optimal Chebyshev sequences and Gaus- 
sian sequences are similar, which are consistent with our design of chaotic spreading 
sequences using ergodic theory. Moreover, the performance difference between opti- 
mal and random white sequences becomes more distinct when the number of users 
becomes larger. 

In order to understand the behavior of the sequences, we also performed simula- 
tions for different numbers of users, as shown in Figure 5.6. These simulation results 
show that the optimal sequences are better than random white sequences by about 
15% in terms of allowable number of users, which is consistent with the analyti- 
cal expression of (5.22). We also observe that when the number of users is smaller, 
simulation results do not quite match with analytical results obtained under the 
SGA condition. This confirms the well-known fact that the Gaussian approximation 
is not valid when the user number is small. The A-CDMA system performances 
of optimal second- and third-degree Chebyshev sequences are shown in Figure 5.7, 
which has the same parameters as Figure 5.6, and are also better by about 15% 
when Gold codes are employed. These results mean Gold codes have similar system 
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Fig. 5.5. Comparison of error probabilities of as5fnchronous CDMA system in 
AWGN channel using optimal and white sequences generated by Gaussian, Uni- 
form, second-degree Chebyshev, and Binary random-number generators for sequence 
length of 31. (a) K=3, (b) K=5, (c) K=7, and (d) K=10. 

performances as random white sequences, which is reasonable because Gold codes 
are designed to mimic random white sequences excluding some "bad" sequences. 

The CS-CDMA system performances using Chebyshev sequences, white Gaus- 
sian and binary sequences are also shown in Figure 5.7. These simulation results 
show these sequences for the CS-CDMA system have similar performance, and are 
worse than optimal sequences in asynchronous systems by about 73% in terms of 
allowable number of users, which corroborates the anal5rtic expression in (5.25). 

As examples of PWAM maps, tent map and Bernoulli shift map have the finite- 
precision computational difficulty since each iteration of these two maps will shift out 
one bit of the current value. Unhke PWAM maps, Chebyshev polynomials considered 
here are expected to be more robust against finite precision problem. We evaluate the 
performance loss of A-CDMA systems when a second-degree Chebyshev polynomial 
generator using finite-precision computation is employed. The simulation results are 
shown in Figures 5.8 and 5.9. We observe from these simulation results that an 
A-CDMA system has only slight performance loss by using more than 15 - 20 bits 
for sequence generation compared to double precision (52 bits). 
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Fig. 5.6. Comparison of error probabilities of asynchronous CDMA system in 
AWGN channel using optimal and white sequences generated by Gaussian and Bi- 
nary random-number generators and Gold codes for sequence length of 63 and for 
different number of users (channel SNR= 25 dB). 

Finally, we compare the A-CDMA system performance over two different frequency- 
nonselective fading channels, Rayleigh and Rician fading channels, when the optimal 
sequences and Gold codes are employed with the use of the single-user matched filter 
receiver structure. A Rayleigh nonselective fading channel can be described by the 
following input-output relationship: 

2/W(t) = iie{Ap's('=)(f)expO-9|'=))},    for   m < t < {I + 1)%, (5.44) 

where Af^ is a Rayleigh-distributed random variable with S{[AfX} = 1 ^^^^ 
ep^ is the phase shift uniformly distributed in [0,27r). All communication Unks are 

assumed to fade independently. That is, Af'^ and e['°' are independent for all I and 
k. Assuming the phase shift for the desired z-th user is known in the receiver, i.e., 
^(i) ^ 0ii) = 0, the bit error probability of the i-th user under the SGA assumption 
is given [9] by 

P4i) = |{1 - [1 -^ 2(Aro + a\m-'^^} 

^llNo + o-%{i)]       if   No+ al(i)« 1/2, (5.45) 
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Fig. 5.7. Comparison of error probabilities of asynchronous CDMA system in 
AWGN channel using second- and third-degree Chebyshev optimal and white se- 
quences and Gold codes for sequence length of 63 and for different number of 
users and comparison with chip-synchronous CDMA system using various sequences 
(channel SNR= 25 dB). 

where cr^(t) is the (nonfaded) MAI power as defined in (5.15). Prom (5.45) and 
the simulation results shown in Figure 5.10, an A-CDMA system using the optimal 
spreading sequences can eillow about 15% more users than Gold codes to have the 
same performance over the frequency-nonselective Rayleigh fading channel with high 
channel SNR. 

The output signal of a Rician nonselective fading channel is the sum of a non- 
faded version of the input signal (specular component) and a nondelayed Rayleigh 
faded version of the input signal (scatter component). That is, the input-output 
relationship of a Rician fading channel is given by 

i''\t) = s^''\t) + Re{-/kA<i''^s^''\t)exp{j9l''^)} (5.46) 

for ITb <t < {l + l)Tb. In (5.46) 7*, is a nonnegative real number and 7! is the power 
ratio of faded component to specular component. We assume all users have the same 
faded power ratio 7^ and only the phase cp^*^ of the specular component is known 
at the i-th user receiver. Under the SGA assumption, the bit error probabiUty over 
the Rician fading channel is given [9] by 



144       K. Yao, C.C. Chen 

B 10 
E^„(dB) 

Fig. 5.8. Performance of asynchronous CDMA system in AWGN channel using 
various finite-precision optimal sequences generated by the second-degree Chebyshev 
polynomial map with N=31 and K=7. 

Pe{i) = Q 1/272+ (l-f-7^)o-A(«)+'^o 
(5.47) 

The simulation results of the error probabilities for various 7^ are shown in Fig- 
ure 5.11. Clearly, the A-CDMA system performance using the optimal sequences is 
better than Gold codes because of smaller (7\{i) for the optimal sequences [8]. 

5.9 Construction of Optimal Spreading Sequences from 
Gold Codes 

As is well known, Gold codes of length AT = 2" - 1 is a family of optimal bi- 
nary sequences that attain the Sidehiikov bound on the maximum 9max of periodic 
nonzero-lag auto-correlation peak 9a and cross-correlation peak 6c for any set of N 
or more binary sequences of period N when n is odd. When n is even, the 9max for 
Gold codes is larger than the Sidelnikov bound by a factor of approximately \/2 [18]. 
In other words. Gold codes mimic purely random binary sequences excluding some 
"bad" sequences, and are expected to have similar performance parameter as purely 
random binary sequences when employed in an asynchronous CDMA system. 
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Fig. 5.9. Performance of asynchronous CDMA system in AWGN channel using 
various finite-precision optimal sequences generated by the second-degree Chebyshev 
polynomial map with N=63 and SNR= 25 dB. 

Neglecting the small values of auto-correlation and cross-correlation on a set of 
Gold codes, we can design the optimal spreading sequences by passing these Gold 
codes through an infinite impulse response (IIR) low-pass filter with a single pole at 
(—r) defined in the previous section. That is, 

2/0 = xo, 

yj+i = -ryj + ^y2{l - r^) Xj+i, (5.48) 

where r = 2 - v^ and {xj}fSo^ e {-1,1} is a Gold code. The output sequence 
{2/0, J/i, • • • ,2/j\r-i} of the filter will have an nearly exponential auto-correlation func- 
tion (—r)'. 

First, we simulate an asynchronous CDMA communication system for the 
spreading factors AT = 31 using Gold codes and purely random binary sequences. 
The simulation results, as given in Figure 5.12, are consistently expected. Then we 
performed the simulation of an asynchronous CDMA system using the proposed 
optimal spreading sequences, and performance is also shown in Figure 5.12. These 
simulation results show that the proposed optimal spreading sequences are better 
than Gold codes and purely random binary sequences by about 15% in terms of al- 
lowable number of users, which is consistent with the analytical expression. We also 
observe that when the number of users is smaller, simulation results do not quite 
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Fig. 5.10. Comparison of error probabilities of asynchronous CDMA system over 
frequency-nonselective Rayleigh fading channel using Chebyshev optimal sequences 
and Gold codes for sequence length of 63 and for different number of users (channel 
SNR=25dB). 

match with anal)d;ical results obtained under the SGA condition. This confirms the 
well-known fact that the Gaussian approximation is not valid when the user num- 
ber is small. The performance of asynchronous CDMA systems for the spreading 
factor N — 63 using various sequences is shown in Figure 5.13, which has the same 
performance characteristics as Figure 5.12. 

5.10 Acquisition Time of Optimal Spreading Sequences 

In this section [8], we consider the single dwell serial search acquisition model for 
the spreading sequence [11]. If the correlation error between the desired spreading 
sequence of the transmitter and local spreading sequence at the receiver is fixed at 
the update size of the spreading sequence, i.e., the probability of detection PD is 
constant (time invariant), the mean acquisition time is given in [11] 

J- ac •— 
2 -I- (2 - PD)(g - 1)(1 -I- kPpA) 

2PD 
TD, (5.49) 

where PFA is the probabiUty of false alarm, TD seconds is the "dwell time," krn is 
the "penalty" time of obtaining a false alarm, and q = IxN\s the total number of 
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Fig. 5.11. Comparison of error probabilities of asynchronous CDMA system over 
frequency-nonselective Rician fading channel with various powers of scatter compo- 
nent using Chebyshev optimal sequences and Gold codes for sequence length of 63 
and for different number of users (channel SNR= 25 dB). 

cells to be searched, where / is the number of search samples per chip, and N is the 
period of the spreading sequence. 

Firstly, we assume the time delay between the considered transmitter and re- 
ceiver is some multiple of one-half chip duration to have a constant PD- We set 
A; = 4 for the penalty of a false alarm, I = 2, and the detection threshold a = 0.5 
for comparison with the correlation output at the receiver. The average acquisition 
time of optimal spreading sequences and Gold codes are shown in Figure 5.14 (as 
observed in the previous section, since SGA is not appropriate for the MAI when 
the user number is small, the PD and PFA are obtained from extensive simulations). 

However, the time difference between the transmitter and receiver spreading se- 
quences is not controllable and not necessary to be some multiple of one-half chip 
duration, and hence is assumed to be uniformly distributed in [0, A^). If the phase 
difference between the transmitted spreading sequence and local spreading sequence 
at the receiver is within ±| chip, the acquisition is declared. Thus, PD is not time 
invariant, and (5.49) is not valid. The simulation results of the acquisition time per- 
formance are shown in Figure 5.15. Prom Figures 5.14 and 5.15, the acquisition time 
performance for the optimal sequences is better than Gold codes when employed. 

Furthermore, the acquisition time performance using different detection thresh- 
olds for 8 users in the channel Unk are shown in Figure 5.16. In this particular 
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Fig. 5.12. Comparison of error probabilities of asynchronous CDMA system using 
various spreading sequences (N=31 and channel SNR Et/No = 27 dB). 

case, the optimal detection thresholds for both spreading sequences are between 0.6 
and 0.7, and the corresponding acquisition performance for the optimal spreading 
sequences is better than Gold codes. We also observed that the optimal spreading 
sequences are worse when larger threshold is used. The reason to this is as follows. 
The auto-correlation at lag one of the spreading sequences becomes more crucial for 
the acquisition of sequences when the detection threshold is larger. Prom (5.21), the 
peak \/3 - 2 of nonzero-lag auto-correlation of the optimal spreading sequence is 
always at lag one while it is not necessary for Gold Codes. 

Although many parameters in the acquisition scheme can be optimized, the 
15% decrease of the MAI power by using the optimal sequences than Gold codes is 
apparently an advantage of assisting the acquisition of the spreading sequences in 
an asynchronous CDMA system. 

5.11 Conclusions 

We first reviewed some aspcets of chaotic communication. Then we introduced the 
BPSK-CDMA spread spectrum communication system. Then we proposed a new 
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Fig. 5.13. Comparison of error probabilities of asynchronous CDMA system using 
optimal spreading sequences and Gold Codes (N=63 and channel SNR Eb/No = 27 
dB). 

design methodology for the design of optimal spread spectrum sequences for asyn- 
chronous and chip-synchronous CDMA systems with respect to minimum error prob- 
ability under the SGA condition. Without any assumption on spreading sequences, 
the optimal partial auto-correlation function of the spreading sequences is derived. 
Moreover, based on the ergodic theory of dynamical systems, a simple method to 
construct such sequences using Chebyshev polynomials, as well as analytical per- 
formance expression are provided. Using the ergodic theory of dynamical systems, 
a method to construct and to analyze such sequences based on ergodic transforma- 
tions is shown. Our method generaUzes some previous approaches proposed in [14], 
[21], and [20]. Under the SGA condition, an asynchronous CDMA system using the 
optimal spreading sequences allows 15% more users than when random white se- 
quences are employed, and 73% more users of chip-synchronous systems. Simulation 
results also show that system performances using this family of chaotic Chebyshev 
spreading sequences are superior than and similar to Gold codes when employed 
in asynchronous and chip-synchronous CDMA systems, respectively. Moreover, the 
Chebyshev polynomial map generator is robust against the finite-precision compu- 
tational problem in terms of asynchronous CDMA system performance, as shown in 
simulation results. The proposed optimal spreading sequences still perform better 
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Fig. 5.14. Acquisition time performance comparison for optimal codes and Gold 
codes when detection probability PD is time invariant. 

than Gold codes in an asynchronous CDMA system over frequency-nonselective fad- 
ing channels. Then some details on the generation of these optimum chaotic CDMA 
codes upon transformation of Gold codes are given. The acquisition time of these op- 
timum chaotic CDMA codes are also shown to be competitive to previously known 
CDMA codes. Extensive simulations are given to verify the performance of these 
chaotic CDMA codes. 
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The tiurbo decoding algorithm is a high-dimensional dynamical system parameter- 
ized by a large number of parameters (for a practical realization the turbo decoding 
algorithm has more than 10^ variables and is parameterized by more than 10^ param- 
eters). In this chapter we treat the turbo decoding algorithm as a dynamical system 
parameterized by a single parameter that closely approximates the signal-to-noise 
ratio (SNR). A whole range of phenomena known to occur in nonUnear systems, 
Uke the existence of multiple fixed points, oscillatory behavior, bifurcations, chaos 
and transient chaos are found in the turbo-decoding algorithm. We develop a simple 
technique to control transient chaos in turbo decoding algorithm and improve the 
performance of the standard turbo codes. 

6.1 Introduction 

Recently, it has been recognized that two classes of codes, namely turbo-codes [1] 
and low-density parity-check (LDPC) codes [2, 3, 4], perform at rates extremely close 
to the Shannon limit imposed by the noisy channel coding theorem [5]. Both codes 
are based on a similar philosophy: constrained random code ensembles, described by 
some fixed parameters plus randomness, decoded using iterative decoding algorithms 
(or message passing decoders). Iterative decoding algorithms may be viewed as a 
complex nonUnear dynamical system. The aim of the present work is to contribute 
to the in-depth understanding of these famiUes of error-correction codes, based on 
the well developed theory of nonUnear dynamical systems [6]. 

Turbo codes were discovered by Berrou et al. in 1993 [1]. On the other hand, 
LDPC codes were originally introduced by Gallager [7] in 1962. The crucial innovar 
tion of LDPC codes being the introduction of iterative decoding algorithms. LDPC 
codes were rediscovered by MacKay et al. [2] in 1996. Moreover, iterative decoding 
of turbo codes was recognized as instances of sum-product algorithms for codes de- 
fined on general graphs [8]. The past few years have seen many new developments 
in the area of iterative decoding algorithms for both turbo and LDPC codes. We 
now briefly mention some of these achievements. The complexity, introduced by the 
interleaver in turbo coding, makes a rigorous analysis of the distance spectrum diffi- 
cult, if not impossible, for an arbitrary interleaver instance. However, Benedetto and 
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his co-workers [9] introduced the concept of "uniform interleaver", which proved to 
be a very useful tool for investigating the average distance spectrum of turbo-codes. 
Moreover, they generalized the original parallel concatenation of convolutional codes 
{i.e. turbo-codes) to the case of serially and hybridly concatenated codes, showing 
that serial concatenation results in a larger interleaver gain and, therefore, in a 
better average distance spectrum. Although turbo-codes, on average, have poor free 
distance, their extraordinary performance was explained from the distance spectrum 
perspective by the phenomenon of spectral thinning, observed by Perez et al. [10]. 

Very recently, in a pioneering paper [11], Richardson has presented a geometrical 
interpretation of the turbo-decoding algorithm and formaHzed it as a discrete-time 
dynamical system defined on a continuous set. This approach clearly demonstrates 
the relationship between turbo-decoding and maximum-likelihood decoding. The 
turbo-decoding algorithm appears as an iterative algorithm aimed at solving a sys- 
tem of 2n equations in 2n unknowns, where n is the block-length size. If the turbo- 
decoding algorithm converges to a certain codeword, then the later constitutes a 
solution to this set of equations. Conversely, solutions to these equations provide 
fixed points of the turbo-decoding algorithm, seen as a nonlinear mapping. In a 
follow-up by Agrawal and Vardy [12] a rigorous bifurcation analysis of the iterative 
decoding process as a dynamical system parameterized by SNR has been carried 
out. These works open new research directions for analyzing and designing random 

coding schemes. 
In this chapter, we will consider the iterative decoding algorithm as a nonlin- 

ear dynamical system, where the codewords—^to which the algorithm converges— 
correspond to fixed points in the symbol state space. We emphasize that in general 
the iterative decoding algorithm, being a nonlinear dynamical system, may exhibit 
a whole range of phenomena known to occur in nonUnear systems [13, 14]. These 
include the existence of multiple fixed points, oscillatory behavior, and even chaos. 

The outline of this chapter is as follows. In Section 6.2 we recall Richardson's 
formulation of the turbo decoding algorithm as a dynamical system [11]. To this aim, 
we consider a classical turbo code with parallel concatenation of identical recursive 
convolutional codes generated by the polynomials {Z?^ + D^ + D^ + D^ +1, D +1}, 
resulting in a rate-1/3 turbo code. The codewords are transmitted over an AWGN 
(additive white Gaussian noise) channel using BPSK (binary phase shift keying) 
modulation. With an interleaver length of n = 1024, the turbo decoding algorithm 
may be described as a dynamical system of dimension n(= 1024), parameterized by 
3n(= 3072) parameters. 

In Section 6.3 we present an overview of nonlinear dynamical systems: basic 
definitions of chaotic set, chaotic saddle, Lyapunov exponents and transient chaos, 
together with simple examples are given. 

In Section 6.4 we analyze the character of the fixed points in the turbo decod- 
ing algorithm. Simulations show that at low SNRs, the turbo decoding algorithm 
often converges to an indecisive fixed point, which corresponds to many erroneous 
decisions on the information bits. On the other hand, at slightly higher SNRs, after 
the waterfall region, the turbo decoding algorithm converges to an unequivocal fixed 
point that corresponds to correct decisions on information bits. 

In Section 6.5, we treat the turbo decoding algorithm as a dynamical system 
parameterized by a single parameter that closely approximates the SNR. By varying 
this parameter, we analyze the turbo decoding algorithm as a function of SNR. In 
each instance of the turbo decoding algorithm that we analyzed, an unequivocal fixed 
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point was found in a wide range of SNRs: we found that this point is stable even 
for SNR « -1.5 dB. However, at low SNR, before and at the waterfall region, the 
decoding algorithm often fails to converge to this fixed point, while spending time, 
instead, onto another attracting (chaotic) invariant set. The reason why the turbo 
decoding algorithm is unable to find the unequivocal fixed point for low SNRs, even 
when the fixed point is stable, is due to the fact the basin of attraction of this fixed 
point can be very small. In our simulations we found that the indecisive fixed point 
looses its stability at low SNR, typically in the range of -7 dB to -5 dB. The region 
-5 dB to 0 dB is characterized by chaotic behavior: the turbo decoding algorithm as 
a dynamical system possesses a chaotic attractor. In the waterfall region, the turbo 
decoding algorithm converges either to the chaotic invariant set or to the unequivocal 
fixed point, after a long transient behavior. The later indicates the existence of a 
chaotic non-attracting invariant set in the vicinity of the unequivocal fixed point. 

Section 6.6 considers an application of the theory developed here. We use a 
simple technique for controlling transient chaos, thereby reducing the number of 
iterations needed by the turbo decoding algorithm to reach the unequivocal fixed 
point. 

6.2 Dynamics of Iterative Decoding Algorithms 

6.2.1 Preliminaries 

Let H be the set of all ordered binary strings of length n. We use 6° = (0,0,..., 0)^, 
6i = (l,0,...,0r,62 = (0,l,...,0r,...,b" = (0,0,...,ir>6"+^ = (l,l,...,0r, 
..., 6^""^ = (1,1,..., 1)^ to denote the elements of 7^ sorted in the increasing order 
of Hamming weight, and within each weight class, sorted in the reverse lexicograph- 
ical order. A density on W is a positive real function defined over H. A density / on 
7i induces a probability measure Prj on the set of all subsets of H, V{H), as follows: 

Prs{A) := 
^benm' 

for all A e V{n). 
A density p is called probability density if YlbenP^^^ = 1. A density p is nor- 

malized with respect to the all zero binary string, b° = 0, if p(0) = 1. We say that 
the densities p and q are equivalent if they determine the same probability density. 
In each equivalence class, there is a unique probability density and a unique density 
normalized with respect to 0. For brevity, a density normalized with respect to 0 
will simply be called a normalized density. 

It is useful to represent densities in the logarithmic domain. Given a density /, 
let F = log o f he its logarithmic representation. We say F is a log-density on H. 
A log-density F is a real valued function on Ti, taking both positive and negative 
values. Let # denote the set of all log densities that correspond to the normaUzed 
densities, that is, F S «? if and only if F(0) = 0. 

Let Hi CHhe the set of all binary strings whose i-th. bit is 1. A density / is 
referred to as a product density if according to the induced probability measure Pr/, 
all bits are independent of each other. For a normalized product density /, /(6'), 
i = 1,..., n, is the likelihood ratio of the i-th bit according to the density /, 
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It is clear that for a product log-density we have 

f{b = bib2...bn)=   n  f^^*^- 
t:6i=l 

We refer to a log density that corresponds to a product density as a product log- 
density. Let n be the set of all product log-densities in ^. Using the last expression, 
for a product long-density F e n,we can write 

F{b = bib2...bn)=  Yl ^(^")- 
i:bi=l 

Therefore, F{b') is the log-hkelihood ratio of the i-th bit according to the density 
/ and densities in II are completely specified by their values on 6^ 6 , ..., 6". 
Furthermore, i7 is an n-dimensional linear subspace of <f. A basis for 11 is given by 
a 2" X n matrix B, having (6')^ as its i-th row. 

We say that two densities p and q have the same bitwise marginal distributions 

if 
Pr„{Hi) = PrgiUi) 

for i = 1,... ,n. For a log-density P, we define a projection map TTP : 77 ^ i7 by 
setting -KpiQ) to be the unique normalized product log-density that has the same 
bitwise marginals as P + Q. In another words, 

.^^^l.<^      1      ^beHiP^b)q{b) 
.HQ)(M = log^^^^^^(,)^(,) (6-1) 

for i = 1,.. .,n. 

6.2.2 The turbo decoding algorithm as a dynamical system 

A classical turbo code is a parallel concatenation of two recursive systematic binary 
convolutional codes, d and C2 [1]- Let i be the information bit sequence of length 
n at the input to the turbo encoder, and let ci(i) (respectively C2(i)) be the parity 
bits produced by the first (respectively second) encoder. The information bit se- 
quence i along with the parity bit sequences Ci(i) and C2(i) form a turbo codeword 
(i,ci(i),C2(i)). 

We assume that the turbo code is transmitted over a noisy binary-input mem- 
oryless channel. Let i, c\ and C2 be the channel outputs corresponding to the in- 
put sequences i, ci and C2, respectively. Ideally, we would Uke to compute the 
posterior probability density, p{b\i, 01,0.2), where b £ H. Let us assume that the 
input bits are independent of each other and are equally likely to be either 0 
or 1. Under this standard assumption, p{b\i,ci,C2) is equivalent to the density 
PMhib) = p{i\b)p{ci\b)p{c2\b). A direct computation oi PML requires taking both 
sets of parity bits, Ci and £2, simultaneously into account by constructing a joint 
trellis of two convolutional encoders, which is computationally prohibitive. 

The turbo decoder consists of two components: a decoder Di for the convolu- 
tional code Ci and a decoder D2 for the code d. These decoders use the BCJR [17] 
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algorithm to compute the a posteriori probabilities of the information bits. Let 51 be 
the a priori product density used by decoder 7^2 and let 92 be the a priori product 
density used by decoder Di. We assume that both densities qi and 92 are initialized 
to the uniform density. The decoding begins with the decoder Di computing the 
posterior likelihood ratios of the information bits based on the prior density 92 and 
the observations i and ci. The posterior likelihood ratio of the i-th information bit 
is given by 

Eben9 PWlci)      E6e„jP(i|fe)p(ci|b)g2(6)' 

Let po,Pi and p2 be the normalized densities equivalent to p{i\b), p(ci|6) and 
p(c2|6), respectively. The first decoder Di uses the normalized density popiQi to 
compute posterior likelihood ratios. In the logarithmic domain, poPi 92 corresponds 
to Po + Pi +Q2- Since (Po + Q2) €11, it follows from (6.1) that the posterior log- 
likelihood ratio of the i-th information bit is given by TTPJ (PQ + Q2)(b')- Next, the 
extrinsic information for the i-th information bit is obtained by dividing its poste- 
rior likelihood ratios, computed with (6.2), by the product of its channel and prior 
likelihood ratios. This extrinsic information is then passed from the decoder Di to 
the decoder D2 by setting the prior density 51 in such a way that the likelihood 
ratios of the information bits according to qi equal their extrinsic information, that 
is, we set 

gi(b') ^ EbeK,PW-^i)p(&°|i)g2(6°) 

1iib°)      ZbenfPWlci) pib*\i) 92(6*) ■ 

In the logarithmic domain, the last equation can be rewritten as 

Ql(b*) = TTP, (Po + Q2W) - (Po + Q2W) 

for i = 1,..., n. Recall that gi and 52 are initialized to induce the uniform probability 
distribution on "H. In the logarithmic domain, this corresponds to setting Q\ = 
Q^°^ = 0. Since qi is a product density, the likelihood ratios gi(ft')/gi(6°) determine 
the density gi uniquely. Therefore, we have: 

Q('+i)=7rp,(Po-FQ(")-(Po + Q^')) (6.3) 

The second decoder D2 performs a similar operation and compute the modified prior 
log-density Q2: 

Qf = -KP, (Po -H Qi')) - (Po + Qj')) (6.4) 

The decoding algorithm iteratively performs the operations indicated by (6.3) and 
(6.4): Z = 0,1,2,.... 

Equations (6.3) and (6.4) may be considered as a discrete-time dynamical sys- 
tem. The log-densities Po, Pi and P2 are completely specified by the channel Uke- 
lihood ratios of the codeword bits. Consequently, the turbo decoding algorithm is 
parameterized by 3n parameters. The iterated variables, Qi and Q2, are product 
log-densities, and each of them can be specified by n log-likelihood ratios. Hence, 
in the above formulation, the turbo-decoding algorithm is a n-dimensional dynam- 
ical system depending on 3n parameters. As shown in [11], this mapping depends 
smoothly on its variables and parameters. 

What are the parameters of the turbo-decoding algorithm? We assume that the 
turbo codewords are transmitted over an AWGN channel using BPSK modulation. 



160       L. Kocarev 

Let s(6) be the Euclidean-space representation of the binary string 6 under the 
BPSK map, and let si = s o ci and S2 = s o C2, where "o" denotes the compo- 
sition of two functions. Without loss of generality, we consider the case when the 
vector (sib°),si{b°),S2{b°)) is transmitted and the vector (x,y,z) is received. The 
normalized posterior density pi, induced on the information bits by y, is given by: 

where a"^ is the noise variance and ||.|p denotes the squared EucUdean distance in 
iR". The corresponding normalized log-density Pi is given by 

p,M     \\y-si(b°)\f-\\y-s,{b)\\' _     2 y. 

y.n^j(b°)^s^j{b) 

where sij and y, are the j-th components of Si and y, respectively. In a similar man- 
ner, log densities Po and Pi are induced by the received vectors x and z, respectively. 
Therefore, the turbo-decoding algorithm has 3n parameters: xs.,... ,Xn,yi, ■ ■ ■yn,z\,... ,Zn- 

6.3 Nonlinear Dynamical Systems 

We define a differentiable discrete-time dynamical system by an evolution equation 
of the form 

x„+i = /(x„), 

where / is a differentiable function and the variables x vary over a state-space M, 
which can be M^ or a compact manifold. Computer experiments with iterative 
decoding algorithms usually exhibit transient behavior followed by what appears to 
be an asymptotic regime. Thus iterative decoding algorithms are dissipative systems. 
In general, for dissipative systems, there exists a set [/ C M, which is asymptotically 
contracted by the time evolution to a compact set, that is the set C\n>of"'i^) '^ 
compact. 

A subset >1 of M is said to be invariant if f{A) = A. We say that a compact 
invariant set A C M is topologically transitive if there exists x € A such that 
w(x) = A, where a;(x) is the set of Umit points of the orbit /"(x)„>o. We say that 
A is Lyapunov stable if for every neighborhood U of A, there exists a neighborhood 
V oiA such that /"(V) C U for all n > 0. In the following definitions, we assume 
that Ais & compact transitive set. 

Definition 1. (Basin of attraction) The basin of attraction B(A) of a set A is the 
set of allx & M with a;(x) C A. 

For non-empty A, the basin of attraction B{A) is always non-empty, because it 
includes A. For A to be an attractor, we require that B{A) is large in the appropriate 
sense. 

Definition 2. (Attractor) A set A is an (asymptotically stable) attractor if it is 
Lyapunov stable and B{A) contains a neighborhood in A. 
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The tool with which one often analyzes attractors in a dy- namical system is 
ergodic theory. For a compact invariant set A, there is a probability measure p in- 
variant under the dynamics (time evolution) whose support is contained in A. 

Definition 3. (Chaotic set) A compact invariant set A is chaotic if A supports an 
ergodic measure but is not uniquely ergodic. 

In what follows we denote by £(•) a Lebesgue measure on M. For instance 
JZ[A) = V{A), where V{A) is the volume of A, is a Lebesgue measure on iR™. 

Definition 4. (Chaotic saddle) A chaotic invariant transitive set A is a chaotic sad- 
dle if there is a neighborhood U of A such that {B{A) nU) y^ A and C{B{A)) = 0. 

Example J.(Piece-wise linear map) Consider a piece-wise Unear function f : IR—* ]R 
defined by: 

a\X -\- ci —00 < a; < 6i 
—a2X + C2 bi <x < 62, 

f{x)  =   i     a3X + C3 b2<x<b3, (6.5) 

—a2dX + C2d b2d-i <x < -1-00, 

where the parameters at > 1, bi G (0,1), and a are chosen so that /(O) = 0, 
/(I) = 1, and the map /(•) is continuous. If atbi < 1 for all i, the map has two 
attractors: a chaotic one, which is a subset of (0,1), and a fixed point located at 
—00. The basin of attraction of the chaotic attractor is the interval (0,1). If atbt > 1 
for all i, the map has only one attractor: the fixed point at —00. However, the map 
admits a chaotic saddle: this is the set of initial points which stay in the unit interval 
when time n goes to infinity. 

6.3.1 Lyapunov exponents 

Lyapunov exponents are useful quantitative indicators of asymptotic expansion and 
contraction rates in a dynamical system. They, therefore, have fundamental bear- 
ing upon stability and bifurcations. In particular, the local stability of fixed points 
(or periodic orbits) depends on whether the corresponding Lyapunov exponents are 
negative or not. For invariant sets with more complex dynamics, such as chaotic 
attractors and chaotic saddles, the situation is much more subtle. Invariant mea- 
sures in this case are often not unique — for instance, associated to each (unstable) 
periodic orbit contained in an attractor is a Dirac ergodic measure whose support is 
the orbit. Ergodic measures are thus not unique if there is more than one periodic 
orbit (as is the case with most chaotic attractors), and each ergodic measure carries 
its own Lyapunov exponents. 

Theorem 1. (Multiplicative ergodic theorem) Let p be a probability measure on the 
space M, and let f : M -^ M be a measure-preserving map such that p is ergodic. 
Let Dxf = (dfi/dxj) denote the matrix of partial derivatives,of the components fi 
at X. Define the matrix 

1^   11' (i5/n-l(.)/)(JD^n-2(,)/) • ■ • {Df^x)f)Dxf = Px/" 

and let T^* be the adjoint ofT^. Then for p-almost all x, the following limit exists: 

A^ 11' Um (T^'T,")* 
n—♦00 
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The logarithms of the eigenvalues of Ax are called Lyapunov {or characteristic) ex- 
ponents. We denote these exponents by Ai > A2 > • ■ ■ or by A'^^ > A'^^ > • ■ • when 
they are no longer repeated by their multiplicity m<'\ If p is ergodic, the Lyapunov 
exponents are almost everywhere constant. 

The finite set {Ai} captures the asymptotic behavior of the derivative along 
almost every orbit, in such a way that a positive Aj indicates eventual expansion 
(and, hence, sensitive dependence on initial conditions) while negative Ai indicate 
contraction along certain directions. 

The exponential rate of growth of distances is given in general by Ai — if 
one picks a vector at random, then its growth rate is Ai. The growth rate of a 
A;-dimensional Euchdean volume element is given by Ai + A2 H h Afc. 

6.3.2 Ergodic measures 

Many important results of ergodic theory hold for arbitrary invariant measures p. 
However, in working with dynamical systems two measures play a central role: nat- 
ural measures and Sinai-Ruelle-Bowen (SRB) measures. For the definition of SRB 
measures, we refer the reader to [15, 16]. We describe the natural measures next. 

In general, it is exceptional that anattractor admits only one ergodic invariant 
measure. In typical cases, there are uncountably many distinct ergodic measures, 
each concentrated on an invariant set (the attractor) of Lebesgue measure zero. 
Nevertheless, in computer experiments in seems that one invariant probability mear 
sure pnaturai Can be derived more or less automatically from the time that the system 
spends in various parts of the attractor A. This is the so-called natural measure which 
describes how frequently various parts of A are visited by the orbit n^ x{n). More 
precisely, let S be a subset of the basin of attraction B{A) and let pe (x, S) be the frac- 
tion of time the trajectory originating at x spends in the e-neighborhood of S. Define 
p{x, S) = hm£_o+ Peix, S). If p{x, S) is the same for almost all x € B{A), then we 
denote this value by p„^tnrM{S) and call it the natural measure of the attractor. 

Example 2. For the logistic map / : [0,1] -^ [0,1] given by f{x) = 4a;(l-a:), the 
whole phase-space is a chaotic set, with natural ergodic measure p = dx/n-^xil - x) 
and Lyapunov exponent A = log 2. 

Example 3. (Piece-wise linear map) Consider the piecewise linear map (6.5) with 
flibj = 1 for all i. In other words, every linear piece maps a part of the unit in- 
terval onto [0,1]. Since |/'(a;)| > 1 everywhere, all periodic orbits are unstable and 
the whole state space [0,1] is a chaotic set. For the natural measure p of this chaotic 
set, one has: 

A =h{p) = ^a^MogOfc . 
fc=i 

The quantity h{-) above is known as the measure-theoretic entropy or the Kolmogorov- 
Sinai entropy. 

6.3.3 Largest Lyapunov exponent as classification tool 

In computer experiments with iterative decoding we have encountered a number of 
qualitatively different attractors, each of them associated with a different type of 
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time evolution. We found that the largest Lyapunov exponent turns out to be a good 
indicator for deducing what kind of state the ergodic measure p is describing. 

Attracting fixed points and periodic points: The point Q e IR^ is a fixed 
point of / : EJ" -+ M^ if f{Q) = Q. It is attracting if there is a neighborhood U 
of Q such that lim„_<x. /"(a;) = Q for all x € U. Clearly, the asymptotic measure 
of the attractor is the measure P = SQ, where 6Q is the Dirac's delta function at Q. 
This measure is invariant and ergodic. The point Q is a periodic point of period k 
if f'°iQ) = Q- The least positive k for which f'°{Q) = Q is called the prime period 
of Q; then Q is a fixed point of f''. The set of all iterates of a periodic point forms 
a periodic trajectory (orbit). The Lyapunov exponents in both cases are simply re- 
lated to the eigenvalues of the Jacobian matrbc evaluated at Q and, therefore, are 
all negative. Thus the largest Lyapunov exponent satisfies Ai < 0. 

Attracting limit cycle: Let T be a closed curve in R"", homeomorphic to a 
circle. If T is an attractor, a volume element is not contracted along the direction 
of r. Therefore, its asymptotic measure has one Lyapunov exponent equal to zero 
while all the others are negative. Thus Ai = 0. 

Chaotic attractor: An attractor A is chaotic if its asymptotic measure (natural 
measure) has a positive Lyapunov exponent. If any one of the Lyapunov exponents 
is positive, a volume element is expanded in some direction at exponential rate and 
neighboring trajectories are diverging. This property is called sensitive dependence 
on initial conditions. Thus for chaotic attractors, Ai > 0 while J2^i ■^i < 0 (since 
the invariant set A is an attractor). 

Example 4. Let a G JR be a parameter, and consider the two-dimensional system 
defined on the plane Si^ as follows: 

Xn+l=yn (6-6) 

2/„+i=a2/„(l-Zn), (6.7) 

The system has a fixed point at x = y = ^, which is stable for 1 < a < 2. As a 
passes through the value 2, this fixed point looses stability and spawns an attracting 
invariant circle (via Neimark-Sacker bifurcation). This circle grows as the parameter 
a increases, becoming noticeably warped. When a = 2.27, the circle has completely 
broken down, forming a chaotic attractor. Figure 6.1 shows a typical route to chaos 
for this system, as well as the different attractors: fixed point, hmit-cycle, and chaotic 
attractor. 

6.3.4 Transient chaos 

Chaotic saddles are non-attracting closed invariant sets having a dense orbit. A tra- 
jectory starting firom a random initial condition in a state-space region that contains 
a chaotic saddle typically stays near the saddle, exhibiting chaotic-Uke dynamics, 
for a finite amount of time before eventually exiting the region and asymptotically 
approaching a final state, which is usually non-chaotic. Thus, in this case, chaos is 
only transient. 

The natural measure for a chaotic saddle is defined as follows. Let U be the 
region that encloses a chaotic saddle. If we iterate A^^o initial conditions, chosen uni- 
formly in U, then the orbits which leave U never return to U. Let Nn be the number 



Fig. 6.1.Route to chaos for the simple 2-D map given by (6.6)-(6.7). The values of 
a corresponding to the invariant sets, starting from the fixed point towards chaos, 
are: 1.9, 2.1, 2.16, and 2.27. 

of orbits that have not left U after n iterates. For large n, this number will decay 
exponentially with time: 

Wo ~ '""n-rl 
We call T the lifetime of the chaotic transient. Let W be a subset of U. Then the 
natural measure of W is 

,„,,    def     ,. ,. NnjW) 
u(W)   =    hm    hm   —^—-, 
^^     ' n—00JV0-.00      iV„ 

where JV„(W) is the number of orbit points which fall in W at time n. The last two 
equations imply that if the initial conditions are distributed according to the natural 
measure and evolved in time, then the distribution will decay exponentially at the 
rate a — 1/T. Points which leave U after a long time do so by being attracted along 
the stable manifold of the saddle, bouncing around on the saddle in a (perhaps) 
chaotic way, and then exiting along the unstable manifold. For the natural measure 
/i of a chaotic saddle, one has 

=   ^A,-MM) 
Ai>0 
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We now present an example where the characteristics of a chaotic saddle, namely 
the chaotic transient lifetime and the Lyapunov exponents, can be computed in a 
closed form. 

Example 5. (Piece-wise linear map) Consider- the piecewise Unear map (6.5) with 
aibi > 1 for all i. In other words, every Unear piece maps a part of the unit in- 
terval onto an interval containing the entire unit interval. This requires |/'(x)| > 1 
everywhere, and thus all periodic orbits are unstable and the chaotic saddle is the 
closure of the set of all finite periodic orbits. Note that the chaotic saddle is a subset 
of the unit interval. For the natural measure /x of this chaotic saddle, one finds: 

2d 

i=-iogE«r^ 
1=1 

^2d     „-l 1 
^^_Ek=i<^k^osak 

E2d    „-l 

E2d    „-l /I(M) = ^2d 

Note that this system satisfies the relation h{fj,) = X-a characteristic of a chaotic 
saddle. 

6.4 Fixed Points in the Turbo-Decoding Algorithm 

6.4.1 Basic concepts of dynamical system theory 

The basic goal of the theory of dynamical systems is to understand the asymptotic 
behavior of the system itself. If the process is described by a differential equation 
whose independent variable is time, then the theory attempts to predict the ulti- 
mate behavior of the solutions of the equation in either the distant future {t —» oo) 
or the distant past {t -» -oo). If, on the other hand, the process is a discrete-time 
process such as iteration of the function G : BJ^ -+ JR"", then the theory attempts 
to understand the eventual behavior of the set of the points {x, G(x), G^(x),...}, 
called a trajectory (or orbit) of x. Functions which determine discrete-time dynam- 
ical systems are also called mappings, or maps. Trajectories of points can be quite 
compUcated sets, even for very simple nonlinear mappings. However, there are some 
trajectories which are especially simple and which play a central role in the study 
of the entire system, as described in the following. 

The point M e iR"* is a fixed point for G : IBT ^ IHT if: G[M) = M. The point 
M is a periodic point of period k if: G''{M) = M. The least positive k for which 
G''{M) = M is called the prime period of M. The set of all iterates of a periodic 
point form a periodic trajectory (orbit). A fixed point M for G : iR" -»JR" is called 
hyperbolic if DG{M) has no eigenvalues on the unit circle, where DG{M) is the 
Jacobian matrix of G computed at M. If Af is a periodic point of period fc, then M 
is hyperbolic if DG''{M) has no eigenvalues on the unit circle. There are three types 
of hyperbohc periodic points: sinks, sources and saddles. M is a sink (attracting 
periodic point) if all of the eigenvalues of DG''{M) are less than one in absolute 
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0.5 1 
SNR [dB] 

Fig. 6.2. The performance of the classical turbo code with interleaver length 1024 
and rate 1/3, for increasing number of iterations. Note that the waterfall region of 
the turbo code corresponds approximately to the SNR region spanning 0.25 dB to 
1.25 dB. 

SNR->-o° -7dE -5cB      -1.5dB     OdB 1dB        SNR-^oo 

Fig. 6.3. Schematic bifurcation diagram of the turbo-decoding algorithm. 
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Fig. 6.4. Transition to unequivocal fixed point via Neimark-Sacker bifurcation: 
average entropy vs. time {E{1 + 1) vs.- /). The values of SNR are: a) -6.7 dB; b) 
-6.5 dB; c) -6.3 dB; d) -6.1 dB; e) -5.9 dB; f) 0.75 dB; g) 0.80 dB; h) 0.85 dB. 
Figures a) and b) indicate the occurrence of Neimark-Sacker bifurcation. Note also 
the chaotic transients in Figs, g) and h). 
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Fig. 6.5. Neimark-Sacker bifurcation and transition to chaos: £(/ + !) vs E{f). The 
values of SNR are: a) -6.7 dB; b) -6.6 dB; c) -6.5 dB; d) -6.3 dB; e) -6.2 dB; f) 
-6.1 dB. Figures a) and b) indicate the occurrence of a Neimark-Sacker bifurcation. 
Note also the torus-breakdown route to chaos in Figs, d) through f). 
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Fig. 6.6. Transition to unequivocal fixed point via tangent bifurcation: average 
entropy E{1) vs. time I. The values of SNR are: a) -7.65 dB; b) -7.645 dB; c) -7.6 dB; 
d) 0.30 dB; e) 0.35 dB; f) 0.4 dB. The indecisive fixed point a) looses its stability via 
tangent bifurcation, and b) the corresponding trajectory in state space approaches 
a chaotic attractor. Figure e) indicates transient chaos. In f) the algorithm reaches 
the fixed point solution in a few iterations. 
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Fig. 6.7. Tangent bifurcation: E{1 + 1) vs E{1). The values of SNR are: a)-b) - 
7.65 dB; c)-d) -7.64 dB. Figures b) and d) are nothing but zooms of Figs, a) and c), 
respectively. 

value. M is a source (repelling periodic point) if all of the eigenvalues of DG (M) 
are greater than one in absolute value. iW is a saddle point if some of the eigenvalues 
of DG^(M) are larger and some are less than one in absolute value. Suppose that G 
admits an attracting fixed point at M. Then there is an open set about M in which 
all points tend to M under forward iterations of G. The largest such open set is called 
the stable set or basin (domain) of attraction of M and is denoted by VF'(M). 

We now consider a discrete-time dynamical system parameterized by a single 
parameter a, G(x,a), a G iR. We assume that G is a smooth function. Since the 
system is smooth, the fixed point as well as the Jacobian evaluated at this point 
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Fig. 6.8. Transition to unequivocal fixed point via flip (or period doubling) bifur- 
cation, a) and b): E{1 + 1) vs I. c), d), e) and f): E{1 + 1) vs E{1). The values of 
SNR are: a) -6.0 dB; b) -5.96 dB; c) -6.0 dB; d) -5.96 dB; e) -5.94 dB; f) -5.84 dB. 
Figures a) and b), or c) and d), show a flip bifurcation. Figures d) and e) indicate 
a Neimark-Sacker bifurcation, while e) and f), torus breakdown route to chaos. 
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is a continuous function of the system parameter. As the system parameter a is 
changed, the magnitudes of the eigenvalues may also change, and it is possible that 
one or more eigenvalues cross the unit circle. This non-hyperbolic behavior usually 
indicates the occurrence of a bifurcation. In a generic system, by changing the sys- 
tem parameter, either a single eigenvalue will cross the unit circle through ±1 or two 
complex conjugate eigenvalues will cross the unit circle together. Therefore, when a 
fixed point changes continuously with the parameter, it can bifurcate and loose its 
stability by one of the following three mechanisms: i) tangent (or fold) bifurcation: 
an eigenvalue approaches -1-1; ii) flip (or period doubling) bifurcation: an eigenvalue 
approaches -1; iii) Neimark-Backer bifurcation: a pair of complex conjugate eigen- 
values crosses the unit circle. These mechanisms will be illustrated in details on the 
turbo-decoding algorithm, in Sec. 4.2. 

6.4.2 Indecisive and unequivocal fixed points 

In our analysis we considered the classical turbo code [1] with identical constituent 
recursive convolutional codes generated by the polynomials {D + D +D + D + 
1,D'^+1}, producing a rate-1/3 turbo code. The codewords were transmitted over an 
AWGN channel using BPSK modulation. The length of the interleaver was n = 1024. 
Figure 6.2 shows the performance of the turbo code. 

Assume that the log-densities Pi and P2 are product log-densities. We know that 
if P is a product log-density then ivpiQ) = P+Q. Therefore, if Pi and P2 are product 
log-densities, the turbo decoding algorithm converges to the fixed point (QljQa) = 
(Pi, P2) in a single iteration, regardless of the initial conditions. The continuity of the 
fixed points with respect to the parameters (Pi,P2) implies that if (Pi,P2) is close 
enough to a pair of product log-densities (Pi*, P2*), then the tiurbo decoding algorithm 
has a unique fixed point close to (Pi*,P2*). Moreover, we expect that the unbiased 
initialization (0,0) will be in the domain of attraction, since for product densities, 
the domain of attraction is II x II which includes the unbiased initialization. 

The turbo decoding algorithm has two types of fixed points: indecisive and un- 
equivocal [12]. For asymptotically low SNRs, Pi and P2 converge to the product 
log-density 0, and therefore, the turbo decoding algorithm should have a fixed point 
close to (0,0). Simulations show that not only is this true but the signal-to-noise 
ratio required for the existence of this fixed point is not extremely low. In fact, for 
low SNR, the turbo-decoding algorithm converges and most of the extrinsic log- 
likehhood ratios, QUb^) and QUb'), for i = 1,... ,n, are close to 0. In this case, the 
probability measures induced by Qt and Q2 are close to 0.5. We refer to a fixed point 
with these characteristics as an indecisive fixed point [12]. At such fixed points the 
turbo decoding algorithm is relatively ambiguous regarding the values of the infor- 
mation bits. Therefore, hard decisions corresponding to these fixed points, typically 
will not form a codeword. For high signal-to-noise ratios, the log-densities Q* and 
Q2 are concentrated on the information sequence that corresponds to the codeword 
closest to the received vector. In other words, with high probability, Prq^ (bi = 0) 
and Prg- {bi = 0) are either approximately 0 or 1, depending upon whether the i-th 
information bit of the codeword closest to the received vector is 1 or 0. Since the 
final log-likelihood ratios computed by the decoding algorithm are strong indicators 
of the information bits, we refer to a fixed point with these characteristics as an un- 
equivocal fixed point [12]. Hard decisions corresponding to unequivocal fixed points, 
will usually form a codeword. 
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Since the turbo-decoding algorithm is a high dimensional dynamical system, we 
suggest the following representation of its trajectories in the state space. At each it- 
eration I, the turbo-decoding algorithm computes 2n log-densities Qi and Q2. Prom 
these log-densities one can calculate, for each iteration, the probabilities Pi(0) and 
p'(l) that i-th bit is 0 or 1. Let us define 

E{1) = -iy;pi(0)lnpl(0)+pUl)lnpi(l)- 
1=1 

Thus, E represents the a posteriori average entropy, which is in a way a measure of 
the reliability of bit decisions of an information block with size n = 1024. When all 
bits are detected correctly or almost correctly, pi is close to 1 for all i and, therefore, 
the unequivocal fixed point is represented by the point close to J5 = 0. On the other 
hand, for an indecisive fixed point, when all bits are equally probable, which is the 
case when SNR goes to -00, £; = 1. In the following we present two types of figures: 
E{1) versus I, and E{1 + 1) versus E{1). 

6.5 Bifurcation 
Analysis of the Turbo-Decoding Algorithm 

The turbo-decoding algorithm is an n-dimensional system with 3n parameters. This 
is a complex dynamical system with a large number of variables and parameters 
and, therefore, is not readily amenable for analysis. As a discrete-time dynamical 
system, the turbo decoding algorithm is parameterized by the log-densities Po, Pi 
and F2. Given the transmitted codeword, Po, Pi and P2 are completely specified 
by the noise values xi,X2,... ,x„, yi,y2,-. ■, and j/„, zi,Z2,..., Zn- To study the dy- 
namics of the turbo decoding algorithm we would like to parameterize it by the 
SNR, that is essentially 1/cr^ [12]. For large enough values of n, as typical for turbo 
codes, the noise variance a^ is approximately equal to: a^ = Yli^j + Vj + «j)/3n. 
In this work, we focus on bifurcations in the turbo decoding algorithm for a single 
parameter, namely parameter a^ [12]. In particular, we fix the 3n - 1 noise ratios 
xijxi.xilxz,..., Zn-i/zn and treat the turbo decoding algorithm as it was depend- 
ing on a single parameter 5-*, which is closely related to the SNR. By varying this 
parameter, we were able to analyze the turbo decoding algorithm as a function of 
SNR. Figure 6.3 schematically summarizes our results. 

6.5.1 Bifurcation diagram 

We have performed many simulations changing the parameter SNR from -00 to 
+00 with different realizations of the noise (different noise ratios xifx-iiX^lxz, ..., 
Zn-i/zn). In each instance of the turbo decoding algorithm that we analyzed, an 
unequivocal fixed point existed for all values of SNR from -00 to +00: this point 
is always represented with the point corresponding to the average entropy E = Q. 
This fixed point becomes stable at around -1.5 dB. However, the algorithm "caniiot 
see" this point until 0-0.5 dB, when, in some cases, the initial point of the algorithm 
(which is always at £ = 1) is within the basin of the attraction of the unequivocal 
fixed point. 
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The algorithm has another fixed point: the indecisive fixed point. For low val- 
ues of SNR, when SNR goes to -co, this fixed point is represented by £ = 1. In 
our simulations we found that the indecisive fixed point moves toward smaller val- 
ues of E with increasing SNR, and looses its stability (or disappears) at low SNRs, 
typically in the range of-7 dB to -5 dB. The mechanisms responsible for the instabil- 
ity/disappearance of the indecisive fixed point of the turbo-decoding algorithm are 
the following: tangent bifurcation, flip (or period doubling) bifurcation and Neimark- 
Sacker bifurcation, as illustrated in Sec. 4.2. Correspondingly, a transition from inde- 
cisive to unequivocal fixed points occurs in the turbo-decoding algorithm. In Fig. 6.3 
this transition corresponds to a large region of SNRs: from -7- -6 dB to 0.5-1 dB. On 
the other hand, the region -5 dB-0 dB is characterized by chaos: the turbo decoding 
algorithm as a dynamical system has a chaotic attractor. In the region 0 dB-1 dB 
chaotic transients occur. These aspects are addressed in more details in Sec. 4.3. 

We note here, by comparison with Fig. 6.2, that the waterfall region of the turbo 
code corresponds to the transient chaos behavior. Also, in this region the unequiv- 
ocal fixed point is stable and the size of its basin of attraction gradually grows for 

increasing SNRs. 

6.5.2 Bifurcations of fixed points 

As explained above, the transition fi:om indecisive to unequivocal fixed points in the 
turbo-decoding algorithm is due to bifurcations of the indecisive fixed point. There 
are three ways in which a fixed point of a discrete-time dynamical system may fail 
to be hyperbolic: when the Jacobian matrix evaluated at the fixed point has a pair 
of complex eigenvalues crossing the unit circle, an eigenvalue at +1, or an eigenvalue 
at -1. In what follows we describe such bifurcations as they were observed in the 
classical turbo-decoding algorithm: 
• Neimark-Sacker bifurcation In this case the Jacobian matrix evaluated at the 

fixed point undergoing the bifurcation admits a pair of complex conjugate eigen- 
values on the unit circle. After the bifurcation, the fixed point goes unstable and 
is surrounded by an isolated, stable, close invariant curve, topologically equiva- 
lent to a circle. This bifurcation is illustrated in Figs. 6.4a)-b) and Figs. 6.5a)-b), 
respectively. Note that the Fig. 6.4 shows the average entropy E versus time I, 
while in Fig. 6.5 we report E{1 + 1) versus E{1). 

• Tangent bifurcation Tangent (or fold) bifurcations are associated with a real 
eigenvalue at -f 1. After the bifurcation, the fixed point undergoing the bifurca- 
tion disappears, without resulting in an invariant set in its neighborhood. Figures 
6.6a-b), and 6.7 illustrate this bifurcation. Note that Fig. 6.6 shows the average 
entropy E versus time I, while on Fig. 6.7 we report E(l + 1) versus E{1). Figure 
6.7d) shows an enlargement of part of Fig. c); it clearly indicates the occurrence 
of a tangent bifurcation. After the bifurcation the trajectory spends a long time 
in the vicinity of the disappeared fixed point, then approaches a chaotic attractor. 

• Flip bifurcation FUp (or period doubling) bifurcation are associated with an 
. eigenvalue at -1. As a result of the flip bifurcation, a stable fixed point becomes 
unstable, and an asymptotically stable period-two orbit appears in the neigh- 
borhood of the resulting unstable fixed point. Figures 6.8a)-d) illustrate this 
bifurcation. Figures 6.8a) and b) show the average entropy E versus time I, 
while in Fig. 6.8c) and d) we report E{1 + 1) versus E{1). 



6 Turbo Decoding Algorithms       175 

6.5.3 Chaotic behavior 

iProm the bifurcation diagram in Fig. 6.3 it can be seen that the turbo-decoding 
algorithm exhibits chaotic behavior for a relatively large range of SNR values. Our 
analysis indicates three routes to chaos: period-doubling, intermittent and torus 
breakdown. A torus breakdown route to chaos is evident, for example, in Fig. 6.5, 
where a fixed point undergoes a Neimark-Sacker bifurcation giving rise to a peri- 
odic orbit; the later forms a torus which bifurcates leading to a chaotic attractor. 
Some chaxDtic time series are visible in Fig. 6.6. The same route to chaos can be 
observed in Fig. 6.8 where, this time, a period doubling cascade is interrupted by 
the occurrence of Neimark-Sacker bifurcations. The largest Lyapunov exponent of 
the chaotic attractor from Fig.6.5f) was computed to be equal to 0.051. This chaotic 
attractor exists for all values of SNRs in the interval [-6.1,0.5]. The values of the 
largest Lyapunov exponent for some parameter values are: 0.63 for SNR=-4dB, 1.28 
for SNR=-2dB, 1.68 for SNR=OdB, and 1.73 for SNR=0.5dB. 

In the waterfall region, the turbo decoding algorithm converges either to the 
chaotic invariant set or to the unequivocal fixed point, after a long transient behav- 
ior indicating an existence of a chaotic non-attracting invariant set in the vicinity 
of the unequivocal fixed point. In some cases, the algorithm spends a few thousand 
iterations before reaching the fixed point solution. As SNR increases, the number of 
iterations decreases, as can be seen, for example, from Fig. 6.4g)-h), and Fig. 6.6e)-f). 
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Fig. 6.9. Stability analysis of the unequivocal fixed point at the origin. 
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Fig. 6.12. Histogram showing the number of frames which still remain chaotic after 
a certain number of iterations, with/without control of transient chaos: (a) at SNR 
of 0.4dB, (b) at SNR of 0.8dB. 

6.6 Control of Transient Chaos 

In this section we consider an application of nonlinear control theory in order to 
speed-up the convergence of the turbo-decoding algorithm. First of all, we analyze 
the stability of the unequivocal fixed point. Figure 6.9 shows E{1 + 1) versus E{1) 
for three different values of SNRs: -1.65 dB, -1.58 dB, and -1.30 dB. Note that we 
are very close (10~^) to the fixed point at the origin. The two curves which are 
above the line E{1 4-1) = E{1) have slopes at the origin greater than 1, indicating, 
for these values of SNFls: -1.65 dB and -1.58 dB, that the fixed point at origin is 
unstable. However, the third curve, which is below the line E(l + 1) = E{1), has 
slope smaller than 1. This is a numerical confirmation that the unequivocal fixed 
point becomes stable for SNR « -1.5 dB. Although the unequivocal fixed point is 
stable in the region -1.5 dB to 0 dB, the algorithm does not seem to converge to 
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it from the initial condition. This is due to the fact that the basin of attraction of 
this point in this region of SNR is too small. In the region 0 dB to 1 dB, which 
corresponds roughly to the waterfall region, the turbo decoding algorithm converges 
either to the chaotic invariant set or to the unequivocal fixed point, after a long 
transient behavior indicating the existence of a chaotic non-attracting invariant set 
in the vicinity of the unequivocal fbced point. In some cases, the algorithm spends 
a few thousand iterations before reaching the fixed point solution. 

We have developed a simple adaptive control mechanism to reduce the long tran- 
sient behavior in the decoding algorithm. For example, let us consider the trajectory 
shown in Fig. 6.4g), which converges to the unequivocal fixed point after 577 itera- 
tions. When the control is applied, the algorithm approaches the unequivocal fixed 

point in 13 iterations only. .    •     j 
A schematic block diagram of the turbo decoder with adaptive control is depicted 

in Figure 6.10. Our control function g{-) is given by: 

9{X,) = aX,e-^l^<l, (6-8) 

where Xi, X2 are extrinsic information variables, while a,(3 are parameters. In sim- 
ulations, we have used a = 0.9 and 0 = 0.01, although similar results were obtained 
with other values of a € [0.8,1] and /3 S [0.01,0.001]. 

The adaptive control algorithm of Figure 6.10 is very simple, and can be easily 
implemented (both in software and/or in hardware) without significantly increasing 
the complexity of the decoding algorithm. 

The intuition behind our control strategy can be explained as follows. Let us 

write g{Xi) as 
g{Xi) = (giiXii,gi2Xii,...,ginXin) 

The probability that the fc-th information bit is 0 is given hy pi = 1/(1+6^"), where 
Lk = Xik+Xik+'^cl. liLk is small, then gik is close to 1 (since a is close to 1 and /3 
is small). In other words, the control algorithm does nothing. If, however, Lk is large, 
then the control algorithm reduces the value of gik, thereby attenuating the effect of 
Xik on the decoder. If the A;-th bit is a part of a valid codeword, the control algorithm 
does not affect the decoding: the turbo decoding algorithm makes a decision for the 
k-th bit with probability close to 1 with or without control. However, if the fc-th bit is 
not a part of a valid codeword and the turbo decoding algorithm "struggles" to find 
the valid codeword, the attenuation effect of gik helps a great deal in reducing the 
long transient behavior. We found that the average chaotic transient Ufetime with 
control is only 9 iterations, as compared to about 350 iterations without control. 

The performance of the control strategy is reported in Figure 6.11. On average, 
turbo decoding with control exhibits a gain of 0.25 dB to 0.3 dB over the conventional 
turbo decoding algorithm. Note that the turbo-decoding algorithm with control, 
stopped after 8 iterations, shows better performance than the conventional turbo 
decoding algorithm stopped after 32 iterations. Thus adaptive control produces an 
algorithm that is four times faster, while providing about 0.2 dB gain over the con- 
ventional turbo decoding algorithm. On the other hand, we can see from Figure 6.11 
that control is not very effective in the error-floor region. This is to be expected 
since the iterative decoding process does not exhibit transient chaos in this region. 
Finally, the error frame statistics-with/without control, as a function of the SNR, 
are reported in Figure 6.12. 
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6.7 Conclusions 

The turbo decoding algorithm can be viewed as a high-dimensional dynamical sys- 
tem parameterized by a large number of parameters. In this work, we have shown 
that the turbo decoding algorithm exhibits a whole range of phenomena known to 
occur in nonhnear systems. These include the existence of multiple fixed points, os- 
cillatory behavior, bifurcations, chaos and transient chaos. As an application of the 
theory developed, we have devised a simple technique to control transient chaos in 
the waterfall region of the turbo decoding algorithm. This results in a faster conver- 
gence and a significant gain in terms of BER performance. Part of this work has been 
already pubhshed in [18], while more detail treatment of the nonlinear phenomena 
is iterative decoding algorithms can be found in [19]. 
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Summary. During the last decade a new approach for secure communication, based 
on chaotic dynamics attracted the attention of the scientific community. In this chap- 
ter we give an overview and describe the research that was done at the Institute 
for Nonlinear Science (INLS) on this topic. We begin this chapter with a brief in- 
troduction to chaos based encryption schemes. We then describe a new method for 
pubUc key encryption that we have developed which is based on distributed chaotic 
dynamics. Next, we layout a quantitative cryptanalysis approach for symmetric key 
encryption schemes that are based on active/passive decomposition of chaotic dy- 
namics. We end this chapter with a summary and suggestions for future research. "* 

7.1 Introduction 

Using chsios in communication has been a very active area of research in the last 
decade. The main perceived benefits of using chaos in communications are related 
to its non-periodic and seemingly random appearance. Therefore, there were several 
proposals of using chaotic waveforms for spreading the spectrum of the information 
signal (e.g., [3,1]). Other methods of communications based on chaotic dynamics do 
not provide processing gain, however they are intended to provide a certain degree 
of privacy or security to the transmission (e.g., [25, 26, 32]). The second group of 
methods falls into a new category of chaos based encryption schemes. Chaos based 
encryption schemes have several advantages over traditional encryption schemes: 

• Chaos based encryption schemes can be defined over continuous number field 
and are not Umited to integer number fields as traditional encryption schemes 
are. This provides chaos based encr3T)tion schemes with a richer variety of func- 
tions that can be used for encryption. Also, it is possible to use chaos based 
encryption schemes that do not require digitization of the message (traditional 

* Portions of this chapter were taken from publications [15] [16] [17] [18]. 
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encryption schemes are defined over integer number fields and therefore require 
digitization of the data). 

• Encryption can be implemented directly using high speed analog components 
(optical or electrical) such as lasers etc. Traditional encryption schemes can be 
implemented only by using digital hardware. 

• Encoding and broadband modulation can be implemented using a single analog 
circuit. In traditional encryption two circuits are needed: A digital circuit for 
encryption, and an analog circuit for broadband modulation. 

• Chaotic dynamics can generate non-periodic pseudo random waveforms. Pseudo- 
random sequences generated by traditional encryption schemes are implemented 
using digital hardware, and therefore are always periodic, with a period that de- 
pends on the number of bits used to represent the state of the PN sequence 
generator. 

The main disadvantages in using chaotic encr3T)tion schemes are: 

• The security of chaotic encryption is difficult to quantify. The security of tradi- 
tional encryption schemes based on integer number theory have been studied for 
a long time and is considered to be reliable. In contrast, the security of chaotic 
communication schemes often reUes on a mixture of analytic methods and intu- 
ition. Encryption and cryptanalysis using chaotic dynamics is a relatively new 
field that has been studied for nearly a decade. 

• Typically the power efficiency, bandwidth eflaciency, and bit error rate perfor- 
mance of chaos based communication schemes is inferior to that of traditional 
communication schemes. 

In this chapter we give a brief overview of existing chaos based secure commu- 
nication schemes and describe some of the research we conducted on this topic. We 
begin by reviewing existing chaos based encryption schemes in section 7.2 followed 
by review of cryptanalytic strategies in section 7.3. In section 7.4 we describe a quan- 
titative approach to cryptanalysis of active/passive chaotic encryption schemes. In 
section 7.5 we introduce a new method for pubUc (asymmetric) key encryption based 
on chaotic nonlinear dynamics We end this chapter with a summary and discussion 
in section 7.6. ' 

7.2 Overview of chaos based encryption schemes 

There are two main types of chaos-based encryption schemes: The first type is simi- 
lar to traditional encryption schemes that are defined over integer number fields. In 
those schemes chaotic dynamics is used to generate a continuous chaotic waveform 
which is digitized in order to generate a pseudo-random binary sequence. The re- 
sulting pseudo-random binary sequence is then used to mask a transmitted binary 
message. So far, this type of chaos based encryption schemes did not prove to be 
more secure than traditional non-chaos based encr)T)tion schemes [30]. 

The second type of chaos based encryption schemes generates at the transmitter 
a continuous chaotic waveform that is used to mask a continuous message. This type 
of chaos based encryption is interesting since it is defined over continuous number 
fields, and therefore has several advantages over traditional encryption schemes that 
axe limited to integer number fields. 
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A chaotic encryption scheme is typically based on a chaotic dynamical system in 
which the parameters and/or the initial state serve as a key. Most of the proposed 
chaotic communication schemes use the following methods: chaos synchronization 
([23],[24],[25], [26]), controlling chaos ([28],[29]) chaotic shift keying [3]. Chaotic en- 
cryption can be discrete in time and performed by iterating a chaotic map 

x(n + 1) = F(x(n), m{n)) 
x(0)     = xo 

or continuous in time and achieved by integrating a differential equation 

x(t) =F(x(t),m(t)) 
x(0) = Xo 

(7.1) 

(7.2) 

where x is the vector of the state variables, and m is a message. The vector field 
F(«) and/or the initial state xo can be used as an encryption key. The message m 
is referred as the plaintext and the transmitted signal is referred as the ciphertext. 
A chaos based encryption scheme is illustrated in Fig.7.1. 

Transmitter 

m 

njuL 
K={F(V),x,} 

Receiver 

m 

nriR. 
K = {¥-\**),x,) 

Channel 

Fig. 7.1. Illustration of an encrj^ption scheme based on chaotic dynamics. 

In the following describe some of the main types of secure communication 
schemes based on chaos. 

7.2.1 Chaos synchronization using additive mixing 

Communication schemes that are based on chaos synchronization and additive mix- 
ing of a chaotic signal with a message are described in [25] and illustrated in Fig.7.2. 
In additive mixing communication schemes a message signal is added to a chaotic 
signal generated by a chaotic dyneimical system at the transmitter, and the sum of 
the two is transmitted through the channel. At the receiver which is synchronized 
to the transmitter the chaotic component is subtracted from the received signal to 
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Transmitter; m(t) 

x'(t) = F(x(t)) 
H(x(t)) 

Receiver: 

y'(t) = F'(y(t),s(t)) 
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s(t) 
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H(y(t)) 
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s(t) 
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Fig. 7.2. Chaotic communication scheme based on chaos synchronization and ad- 
ditive mixing of a message with a chaotic component. 

recover the original transmitted message. In Fig.7.2 the transmitter state evolution 
is governed by the dynamical system 

x(t)=F(x(t)). (7.3) 

A scalar H{x.{t)) which is a function of ithe transmitter state x(f) is added to the 
message m{t), and the sum of the two is transmitted over the channel. The trans- 
mitted signal s{t) is given by 

s{t) = H{^{t)) + m(t) (7.4) 

It a common practice to choose the chaotic scalar added to the message as one of the 
components of the transmitter state x{t), however in the general case H{-x{t)) can 
be any function of the transmitter state x(t), as long as the receiver synchronizes to 
the transmitter using the scalar H{x{t)). The evolution of the receiver state y(t) is 
governed by the dynamical system 

y(n) = F(y(<),s(t)) (7.5) 

The receiver state y(t) synchronizes to the transmitter state x(t) at the rate of the 
largest Lyapunov exponent A, so that 

|y(t)-x(f)|oce-^' (7.6) 

At the receiver an estimation m{t) for the message m{t) is calculated by subtracting 
the estimation H{y{t)) from the received signal, 
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mit) = s{t) - H{yit)) (7.7) 

The addition of a message signal m{t) to the chaotic scalar H{x{t)) at the transmit- 
ter can degrade the quality of the synchronization between the transmitter and the 
receiver, and even result in loss of synchronization if the message component is too 
large. Also, in the presence of a large message the chaotic signal will no longer hide 
the message. Therefore, in order to maintain synchronization between the transmit- 
ter and the receiver, and to ensure that the chaotic signal masks the message, the 
dynamic range of the message has to be significantly smaller than the dynamic range 
of the chaotic scalar H{x.{t)) added to the message: 

|m(n)| < \H{^m (7.8) 

The advantage in using additive mixing is. the simplicity of the circuitry used to im- 
plement the transmitter and the receiver. However, additive mixing schemes are of- 
ten not efficient since only a small portion of the transmitted power is used to convey 
the message, while most of the transmitted power is consumed by the chaotic compo- 
nent if(x(i)). Also, as we will show in the next Section, the security of such commu- 
nication schemes is often poor, and various cryptanalysis schemes that are capable of 
decoding the message and reconstructing the secret dynamics have been developed. 

7.2.2 Chaos synchronization 
£uid communication using active/passive decomposition 

In chaotic communication schemes that are based on additive mixing the added 
message component should be kept small compared to the chaotic component in 
order to maintain synchronization. This is not the case in chaos synchronization 
communication schemes that are based on active/passive decomposition, where the 
message component can be of the same order or even larger than the chaotic i com- 
ponent. This property can be very useful for enhancing the security of an encryption 
scheme, as we demonstrate in Section 7.4. 

In chaotic communication schemes that are based on active/passive decomposi- 
tion of chaotic dynamics a dynamical system is divided into an active and a passive 
component [32], [33]. While at the transmitter both active and passive parts are cou- 
pled to produce chaos, the receiver only has the passive subsystem which is driven by 
the signal from the active subsystem of the transmitter. By design, all the conditional 
Lyapunov exponents of the passive subsystem are negative, and the receiver state 
can synchronize to the transmitter state at the rate of the largest conditional Lya- 
punov exponents. An active/passive decomposition based communication scheme 
scheme is illustrated in Fig.7.3. In Fig.7.3 the receiver uses the transmitted signal 
s{n) to synchronize the receiver state y(n) to the transmitter state x(n) at the rate 
of the conditional Lyapunov exponent A which is conditioned on s{n). 

The transmitter dynamical system is given by 

x(n+l) = F(x(n),s(n)). (7.9) 

The scalar signal s{n) transmitted from transmitter to receiver is given by the func- 
tion 

s(n)=il(x(n),m(n)), (7.10) 
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Channel Transmitter 

m(n) 

s(ii)=H(x(n),m(n)) 

s(n) 
x(n) 

x(n+l)=F(>;(n),s(n)) 

s(n) 

Receiver 

in(n) 

in(n)=H-'(y(n),s(n)) 

s(n) 

y(n) 

y(n+l)=F(y(n)^(n)) 

Fig. 7.3. Illustration 
of an active/peissive de- 
composition based secure 
communication scheme. 
From [17]. 

or alternatively by 
s{n + 1) = H{yi{n),m{n), s{n)). (7.11) 

The receiver is governed by the driven dynamical system 

y(n + l) = F(y(n),s(n)). (7.12) 

The synchronization error between transmitter and receiver states decays at the rate 
of the largest conditional Lyapunov exponent, so that 

y(0) - x(0) -|A|n (7.13) (y(n)|5(0),... sin)) - (x(n)|s(0),... s{n)) 

and once synchronization is achieved, the message can be decoded at the receiver by 

m{n) = s{n) - y{n) (7.14) 

Despite the obvious advantages of this method over the additive mixing, its secu- 
rity can be easily compromised. K.Short [35] proposed a method of breaking such 
schemes using local reconstruction of "average dynamics" (see Section 7.3.3). In 
Section 7.4 we describe a quantitative approach towards encryption schemes that 
employ active/passive decomposition that is based on the reconstruction of the av- 
erage local dynamics. 

7.2.3 Chaotic shift keying ^ 

In Chaotic Shift Keying (Figure 7.4) the transmitter dynamics is dissipative and 
chaotic. The transmitter state trajectory converges to a strange attractor. A mes- 
sage is transmitted by altering one or more parameters of the transmitter dynamics 

* Not to confuse the methods described in this section with a class of Differential 
Chaos Shift Keying [3] and its generaUzations (see Chapter [GMM]) which are 
based on transmitting pieces of modulated chaotic time series together with 
unmodulated (reference) pieces for differential detection 
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ri 
t(n)=F(t(n-l)) 

Transmitter Receiver 

s(n+l) 

m=0 

Embedding 

m=0 

■ s(n) 

Fig. 7.4. Communication scheme using chaotic shift keying [4]: By altering a pa- 
rameter the transmitter dynamics converges to one of two (or more) attractors that 
correspond to '0' and '1'. The attractors are represented by shaded surfaces in the 
transmitter state space fi, f2- The receiver can not observe the transmitter state t. 
It needs to reconstruct the transmitter embedding phase space using time delays of 
the transmitted signal s{t). In order to decode the message, the receiver estimates 
to which of the allowed attractors in the reconstructed embedding phase space the 
observed trajectory converged. 

which results in a change of the attractor position. At the receiver the message is 
decoded by estimating to which attractor the received signal belongs. Multiple at- 
tractor chaotic communication schemes that are based on three-dimensional Rossler 
systems are described by Carroll and Pecora [4]. 

A disadvantage of many Chaotic Shift Keying modulations schemes is that since 
the transmitter dynamics is altered, the symbol duration T, should be long enough 
to allow the state trajectory to converge to the new attractor during the transmission 
of each symbol. The symbol duration T^ is determined by the largest negative Lyar 
punov exponent A that determines the rate of convergence to the attractor. The long 
time spent converging to the attractor results in lower symbol rate. Furthermore, 
in many cases the security of such method is quite low, as the change in parameter 
values usually results in noticeable changes in the low-order statistical properties of 
the transmitted signal. 

7.2.4 Controlling chaos 

Prom control theory point of view a chaotic dynamics can be considered as a non- 
Unear plant, and various techniques can be used to control it. Several schemes have 
been proposed for controlling chaotic dynamics in order to synchronize between a 
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transmitter and a receiver or to modulate data through control of the evolution in 
time of a chaotic trajectory. A synchronization scheme based on chaos control was 
proposed by Kapitaniak [27] and illustrated in Fig.7.5. 

Transmitter 

*k . K 
K(x,.yJ 

V 
Vi 

Y  . 

Fig. 7.5. Linear feedback is used to control the receiver dynamics in order to syn- 
chronize the receiver to the transmitter [27]. The transmitter and the receiver have 
internal states x and y respectively. The scalar Xi is transmitted from the transmit- 
ter to the receiver. The synchronization error Xi - yt is used as an input to a linear 
controller represented by the matrix K. The output of the controller is used as a 
feedback to the receiver dynamics in order to synchronize the state of the receiver's 
dynamics to the dynamics of the transmitter. 

In Fig.7.5 a transmitter with chaotic dynamics transmits a signal to a receiver. 
Both transmitter and receiver have identical dynamics, however the receiver's dy- 
namics also depends on a control signal that is calculated based on the synchroniza- 
tion error between the transmitter and the receiver. Feasibility of this synchroniza- 
tion scheme was illustrated in [27] using non-autonomous Duffing equation as an 
underlying chaotic dynamical system. The transmitter dynamics was given by 

x + ax + x^ = B cos{t) (7.15) 

The receiver dynamics are controlled using a linear function of the synchronization 
error, 

y + ay + y^ = Bcos{t)+K{x-y) (7.16) 

The control signal does not need to be continuous. In.[6] Yang and Chua describe 
a scheme for impulsive control of chaotic synchronization communication scheme 
based on Chua's circuit [2]. 
The formulation given in [6] for impulsive control of a chaotic dynamics is 

X     =f(f,x), 
Ax   = U(i, x), 

+1 - , x(ij) = xo 
t = Ti 

tQ>0,i=l,2,.. 
(7.17) 

where x is the state and xo is the initial state of the chaotic dynamics governed by 
the vector field f(•, •). Ax is a shift in the state x generated by impulsive control 
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applied to the dynamics at times r,. The amount and direction of shift Ax is deter- 
mined by the state x, and the time index i through the function [/(•, •). 
ControUing chaos can be apphed to chaotic communication schemes not only in or- 
der to synchronize between transmitter and receiver, but also in order to modulate 
data. In [28] and [29] the state trajectory of a chaotic dynamical system is controlled 
so that it follows a predetermined sequence of symbolic dynamics, as illustrated in 
Fig.7.6. In the design of a communication scheme based on symboUc dynamics the 
state space of the transmitter is divided into regions where each region represents a 
discrete symbol. Often partitioning of the phase space is a heuristic process based 
on intuition. Conceptually it is similar to vector quantization, however the two are 
not identical: in symbolic dynamics a symbol often corresponds to a portion of a 
chaotic attractor that has a fractal dimension while in vector quantization symbols 
typically correspond to volumes of integer dimension. Fig.7.6 demonstrates an ex- 
ample of communication system based on division of a chaotic attractor into two 
parts that correspond to two symbols. The security of such schemes depends on 
the complexity of the partition of the phase space corresponding to the transmitted 
symbols. When the partition is simple (as in example of Fig.7.6) the security of the 
communication is very low. 

Control 
(message) 

message 

Transmitter 
B, A, B, B, A,, 

Receiver 

Fig. 7.6. Chaotic modulation by controlling a sequence generated by a symboHc 
dynamics [28]. The phase space of the system is divided into regions. In this example 
it was partitioned into two regions, A and B, that correspond to the right and left 
sides of the attractor. A control signal at the transmitter determines the sequence 
of the symbols generated by the chaotic system in order to modulate a message into 
the chaotic waveform. The message is decoded at the receiver by determining the 
sequence of symbols and converting that sequerice to the corresponding message. 
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7.3 Overview of 
cryptanalysis attacks on chaos based encryption schemes 

7.3.1 Attacks that do not require searching for the encryption key 

In some cases it is possible break a chaos based encryption scheme without search- 
ing for the secret key K that was used to encrypt the message. This kind of attack 
is usually applicable if there is dependency between the low order statistics (mean, 
variance, etc.) of the transmitted signal and the message. In particular, transmission 
of binary data is risky, since it turns out that even high dimensional and comphcated 
chaotic dynamics that may be considered secure can reveal information about the 
transmitted bit without knowing the exact dynamics, and simple clustering of the 
transmitted data into two groups enables decoding of the message. 

In [10] Yang et al. showed that an encryption scheme based on a Chua's circuit 
can broken without reconstructing the chaotic dynamics by using the spectrogram 
of the transmitted ciphertext. In [12]these authors showed that the same encryption 
scheme can also be broken by generating return maps of the transmitted ciphetext, 
again without a need to reconstruct the chaotic dynamics. 

7.3.2 Attacks that rely on partial knowledge of the chaotic dynamics 

If an unauthorized receiver knows the general class of dynamics from which the 
secret chaotic dynamics was chosen from, she only needs to find the specific param- 
eters of that dynamics. For instance, if the unauthorized receiver can assume that 
the secret dynamics is generated by a Chua's circuit, or by a certain type of chaotic 
laser, then she can reduce the dimension of the key space that needs to be searched. 

Low-dimensional modeling of the dynamics. An interesting example for 
breaking an encryption scheme knowing the general class of the chaotic dynam- 
ics was demonstrated by Geddes et al. [34]. They assumed that the unauthorized 
receiver knows that the chaotic system at the transmitter is an erbium-doped fiber- 
ring laser, but the parameters of the system are unknown. They claim that since 
the dimension of the transmitter dynamics is large (Z? > 10) then attacks based on 
nonlinear dynamics forecasting are difficult. However, they show that by modeling 
the transmitter dynamics using a simple linear model with two delay loops and four 
parameters, they could estimate the parameters of the simphfied lower dimensional 
model, and decode the message. 

Generalized synchronization If the general type of dynamics is known to the 
unauthorized receiver, then even if the exact parameters of the system are unknown, 
a small parameters mismatch may still result in an ability of the eavesdropper to de- 
code the message. In [11] Yang et al. show that an encryption scheme based on Chua's 
circuit can be broken using the phenomenon of generaUzed synchronization. The 
unauthorized receiver does not know the exact values of the parameters of a Chua's 
circuit (those parameters are the secret key K), and yet she assumes that the general 
form of the chaotic system is that of the Chua's circuit and assigns some parameters 
which are different from the the true values at the transmitter. Nonetheless, a gener- 
alized synchronization between the transmitter and the unauthorized receiver occurs, 
and the binary message can be decoded using variations in the synchronization error. 
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7.3.3 Attacks that reconstruct the 
encryption key without a priori knowledge about the dynamics 

The unauthorized receiver may also attempt to reconstruct the secret chaotic dy- 
namics of the transmitter without having any o priori knowledge about the type of 
dynamics used. Such an approach was first proposed by by Short [13, 14, 35]. Here 
we will illustrate this approach on the example of active/passive communication 
scheme introduced in the previous Section The mathematical formulation we use is 
somewhat different from the one used in Refs.[13, 14, 35], however it will be more 
suitable for the quantitative cryptanalysis we describe in section 7.4. 

We use the following notations: 
• s(n) = {s{n), ...,s(n-De + 1)} is a reconstruction of the transmitter phase 

space x(n) using De consecutive samples of the transmitted signal s{n). 
• Se are samples of s that are contained within a small De dimensional hypercube 

neighborhood e of size Lt. 
• Xe is a sample x preceded by a sequence s^ Similar definition applies to Xe, y^, 

Sj and TOe. 
• (se) is the average of the N^ available samples of s that are preceded by Sj. (s^) 

is calculated by (s^) = -^ Y^^J-^ Si,t where N^ is the total number of sequences 
Se and Si,e. is the i 'th sample. 
We assume that the message m is added to the transmitted signal, so that the 

transmitted signal s{n) given by Eq.(7.10) is now given by 

s(n) = i/(x(n)) + m{n). (7.18) 

By limiting Eq.(7.18) to instances that are preceded by the driving sequence 
s(n - 1) = {s{n - 1),..., s(n - D^)} we obtain 

s,(n) = i?(x.(n)) + m,{n). (7.19) 

Eq.(7.19) can be interpreted as a local manifestation of Eq.(7.18) in a small De 
dimensional hypercube of size Le- By choosing small Lt we can approximate the 
local dynamics within the neighborhood by its local average. Based on Eq.(7.19) 
we can estimate the average Pe of the local dynamics H{Kt{n)) by averaging of the 
transmitted signal Sc(n): 

= E{s,}-E{m,} ^      ' 

Assuming that the message has zero mean, we arrive at 

P. = E{s,) (7.21) 

Since the unauthorized receiver can obtain only a finite number of transmitted 
samples s(n) for estimating the local dynamics, then it needs to estimate Pj by the 
average of all samples s preceded by the driving sequence Se 

P,^Pe = is.) (7.22) 

The unauthorized can use Eq.(7.19) and the estimation P^ of the local dynamics 
given by Eq.(7.22) to obtain the following estimation m of the message m{n): 

me{n) = se{n) - P. (7.23) 

In section 7.4 we describe a quantitative analysis of the cryptanalysis described in 
this section, and suggest measures that can be taken in order to enhance the security 
of an active/passive based communication scheme. 
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7.4 Quantitative security analysis of chaotic encryption 
schemes based on active/passive decomposition 

In this section we develop the ideas of the last Section towards a more quantitative 
cryptanalysis of a class of chaotic encryption schemes based on the active/passive 
decomposition (see 7.3.3). Here we lay out the main points of our cryptanalysis, 
while the full details of derivations and thorough discussion of our analysis can be 
found in [17, 18]. 

7.4.1 Quantifying security analysis 

We assume that the unauthorized receiver does not have any a priori knowledge 
about the type of chaotic dynamics used and is therefore required to reconstruct the 
dynamics within each small neighborhood using time delay embedding techniques. 

We base our analysis on the average dynamics reconstruction approach [13, 14, 
35] described in Section 7.3.3. The message reconstruction error of the unauthorized 
receiver is given by 

e(n) = m{n) — rh{n) (7.24) 

where m{n) is obtained using the estimation given by Eq.(7.23). 
In [17] we show that if the unauthorized receiver reconstructs the average dy- 

namics within a hyper-cube of size Le using the average dynamics reconstruction, 
the reconstruction mean square error Sfe^} can be approximated by 

£;{e^}«c.e-^l^l^'-f-^-a^ + fcL.' (7.25) 

where A is the conditional Lyaponov exponent of the passive subsystem, £)« is the 
embedding dimension, and A; and c are constants. Nc is the number of samples used 
to obtain a local estimation of the dynamics within a neighborhood of size Le, and 
am is the standard deviation of statistically independent message samples m{n). 

It can be shown [17] that if the transmitted message is larger than the chaotic 
component, i.e. |m| » \H(x.)\, then Eq.(7.25) becomes 

E{e'} = c ■ e-^l^l^' + ^ • f^) "' + kLe' (7.26) 

From Eq.(7.26) it is evident that the unauthorized receiver needs to use at least 
Ns samples in order to reconstruct the chaotic dynamics with the mean square error 
below Cmax- -^a Can be estimated as 

rr _ _ It v.™,    ' 

-kLe^-c-e-^W^' {T:) ' ^'-''l 
If the number of samples transmitted by the authorized receiver is less than Ns, 

she can conclude that the message is safe since the unauthorized receiver can not 
obtain enough data to reconstruct the dynamics with accuracy required for decoding 
the data. 

The authorized receiver can increase the number of samples Ns that can be 
safely transmitted by using a modulation scheme with a large dynamical range Lm- 
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By using fine grained modulation that is sensitive to reconstruction noise the au- 
thorized receiver can force the unauthorized receiver to reconstruct the dynamics 
with low reconstruction error 6^01 and thus increase the number of samples Ns that 
can be safely transmitted. Such a modulation is shown in Fig. 7.7. The modulation 
in Fig.7.7,a is fine grained with small dynamical range. Therefore the unauthorized 
receiver will be required to reconstruct the chaotic dynamics with high accuracy, 
however the message component may not be large enough to mask the chaotic dy- 
namics. The modulation in Fig.7.7,b has a large dynamical range but is not fine 
grained. Therefore the message can be used to mask the chaotic component however 
the unauthorized receiver will not be required to reconstruct the dynamics with 
high accuracy. The most secure modulation scheme is shown in Fig.7.7,c. The whole 
dynamic range is divided into small bins corresponding to "0" and "1", and the 
transmitter selects one of the many bins corresponding to a given symbol randomly. 
The receiver knows the modulation scheme although it does not have to know the 
random code used to select particular bins. On the other hand, this modulation 
scheme presents significant difficulties for the unauthorized receiver since the large 
dynamical range makes the reconstruction of the chaotic dynamics diflBcult, and the 
fine grained modulation (small bins) requires high-accuracy of reconstruction for 
data decoding. The multi-level modulation scheme shown in Fig.7.7,d is also fine 
grained and has a large dynamical range. It is more efficient than the modulation 
shown in The modulation in Fig.7.7,c since the transmitted message can take more 
than two values, however it compromises security since an unauthorized receiver 
can determine if not the symbol itself but the sub-group of symbols to which the 
symbols belongs. In the modulation shown in Fig.7.7,e each time a bit needs to be 
transmitted, an interval corresponding to '0' or '1' is randomly chosen, and a ran- 
dom value within that interval is transmitted. Therefore by using this modulation 
technique the message components appears like a continuous uniformly distributed 
random signal and may be better for masking the the chaotic dynamics. 

The modulation technique which combines fine grained "randomized" symbols 
with a large dynamical range (Figure .7.7,c) is very different than the common strat- 
egy to use a modulation which is as small as possible to enable good masking of the 
message by a larger chaotic component. A fine grained "randomized" modulation 
with large dynamical range enables not only masking of the message by the chaotic 
signal but also the masking of the chaotic dynamics by the randomized message sig- 
nal, making the reconstruction of the chaotic dynamics by the unauthorized receiver 
exceedingly difficult. 

7.4.2 Simulation 

We simulated an active/passive decomposition scheme using a chaotic tent map. 
This dynamics used is simple yet sufficient for demonstrating the main points our 
quantitative security analysis. 

The transmitter dynamics is described by the equations 

x{n -I-1) = Tent{s{n)) - b ■ x(n) ,^ gg) 
s{n)    = x{n) + m{n) 

with the tent map 
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f ax' -k,     if   x' <^ 

195 

(7.29) 

x'      = X mod (w) 

The parameters used for the tent map were h = 0.3, a = 1.5. The conditional Lya- 
punov exponent given by A = hi(6), was controlled by the parameter 6 which was 
set to 6 = 0.5 unless stated otherwise. 

The receiver dynamics was governed by the map 

y{n + 1) = Tent{s{n)) - b ■ y{n) (7.30) 

We used statistically independent message samples m{n) uniformly distributed with 
dynamical range Lm' 

m~I/[-- (7.31) 
2   '    2 ' 

The standard deviation of a^^ of the message is related to its dynamical range Lm by 

r     2 

Cm 12 
(7.32) 

If no message is added to the chaotic dynamics {m{n) = 0), a simple time delay 
embedding reconstruction of the sequence s{n) reveals the underlying tent map, as 
shown in Fig.7.8. Once the message m{n) is added to the chaotic dynamics, the map 
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Fig. 7.8. Recovering the underlying dy- 
namics using time delay embedding of 
the sequence s(n). Prom [17]. 

2    -0.15    -0.1     -0.05        0        0.05      0.1       0.15 
S(n) 

reconstructed using time delay embedding of s(n) blurs, as shown in Fig.7.9. There- 
fore, in this communication scheme not only the chaatic component can be used 
to mask the message, but also the message signal can be used to mask the chaotic 
map and make its reconstruction more difficult. In [17] we show that in addition to 
masking the chaotic map, the statistically independent message samples also break 
the dependence between consecutive samples of the sequence s{Ti). Therefore, even 
with one dimensional tent map defined by Eq. (7.29), the addition of statistically 
independent message samples m{n) results in a sequence s{n) of infinite embedding 
dimension. 

In the analysis of of simulation results we will use the following definitions: 
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Fig. 7.9. Addition of message sam- 
ples ^.[n) perturb the reconstructed 
dynamics shown in Fig.7.8. Prom [17]. 

s(n) 

Af   = 10 Logio[am^] 
X    = 10 Lo5io[S{(//(x))^}] 
AT    = \0 Logw[E{e^}\ 

SNR = 
C    = 

(7.33) 
M 

I 
N 

where M,X and N are the mean square in a logarithmic scale of the message m{n), 
the chaotic component x{n) and the dynamics reconstruction error e(n). SNR is 
the reconstruction signal to noise ratio. C is the 'cleaning factor' which is used to 
measure the ration between the chaotic component X that was added to mask the 
message and the actual message reconstruction error N by the unauthorized receiver. 
C measures the extent to which the unauthorized receiver succeeded in cleaning the 
message M from the masking chaotic component X. 

Shown in Fig.7.10 is the reconstruction SNR as a function of the number of 
samples A^, that were available to the unauthorized receiver for reconstruction. The 
larger Ns, the larger SNR is. Since the embedding dimension £>c and the neighbor- 
hood size Le used for reconstruction were finite {De = 3,Le = 0.02), the reconstruc- 
tion SNR reaches an asymptotic value as impUed by Eq.(7.25). 

Fig. 7.10. Reconstruction signal to 
noise ratio versus number of samples N, 
used for reconstruction. De = 3, 6 = 0.5. 
Prom [17]. 

3 3.5 4 
LoglO(Ns) 

In Fig.7.11 we present the cleaning factor C as a function of the reconstruction 
embedding dimension De and the parameter b that determines the conditional Lya- 
punov exponent A = ln(6). When calculating the theoretical reconstruction error we 
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added a constant offset A to the estimation, and whenever the expected number 
of neighbors within a neighborhood of size Le was less than one {Ne < 1), we set 
Ne = I- Also, in the simulation we discarded samples for which no neighbors in a 
small neighborhood e where found. 

It is evident from Fig.7.11 that for a fixed value of b there is an optimal value 
Dopt for the embedding dimension De that maximizes the cleaning factor C. The 
unauthorized receiver may attempt to estimate this optimal value of De in order to 
maximize the cleaning factor C and minimize the reconstruction error N. 

Also, it is evident from Fig.7.11 that by using larger b (smaller |A|) the cleaning 
factor decreases, and the communication scheme becomes more secure. 
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Fig. 7.11. Gleaning factor C depen- 
dence on Dc and 6. Shown are theoreti- 
cal values (lines) and simulation results 
(symbols). Simulation parameters: Ns = 
2.5e7, M = -13d6, L^ = 0.02. Theo- 
retical estimation parameters: c = 0.22, 
k = 0.3, A = 9dB. From [17]. 

The dependencies of the cleaning factor C on the neighborhood size Lc and on 
the reconstruction embedding dimension De are shown in Fig.7.12. It is evident from 
Fig.7.12 that for a fixed value of the embedding dimension there is an optimal value 
for the estimation neighborhood size Le where a maximal value for the cleaning 
factor C is obtained. Prom Fig.7.12 it is evident that for the tent map model the 
unauthorized receiver can maximize the cleaning factor C by using reconstruction 
parameters De =2 and Lc — 0.016. 
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Fig. 7.12. Cleaning factor C depen- 
dence on De and Le. Shown are sim- 
ulation (symbols) and theoretical val- 
ues (lines). Simulation parameters: Na = 
25e6, M = -ISdB, 6 = 0.2. Theoret- 
ical estimation parameters: c = 0.22, 
h = 0.3, A = MB. From [17]. 

6 
U)glO(U) 

Let P be the fraction of the total number of samples Ns contained within a 
neighborhood of size Le. P is given by 
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(7.34) 

An increase in the message dynamical range Lm will result in an increase of the 
attractor volume in the reconstructed embedding space, and in a decrease in P, as 
shown in Fig.7.13. A decrease in P impUes better security since for a given number 

Fig. 7.13. The neighbors fraction P de- 
pendence on M and Z?e- -Ws = 10 , & = 
0.5, Le = 0.03. Prom [17]. 

— De-I 
- -   Do.2 
--- De.3 

-35 -30 -26 
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of samples A''^ available for reconstruction of the dynamics, the number of samples 
Ni that are available for local reconstruction is smaller, and the unauthorized re- 
ceiver will experience larger reconstruction error. Indeed, as implied by Fig.7.14, 
the cleaning factor decreases as we increase the message dynamical range Lm- It is 
important to note that an increase in the message dynamical range Lm will result in 
an increase in security only if the modulation is kept fine grained (by keeping small 
Lq) in order to force the unauthorized receiver to reconstruct the local dynamics 
with high accuracy. 

Fig. 7.14. Cleaning factor C depen- 
dence on M and N^ for £)e = 3, 6 = 0.5, 
L, = 0.03. Prom [17]. 

Parameter settings of encryption scheme 

In the previous sections we showed that the security of an encryption scheme can 
be maintained by using fine grained modulation (small L,), with large dynamical 
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range Lm and small value of the parameter b which results in a small |A|. Also, 
the number of samples Ns that can be safely transmitted for a fixed set of system 
parameters should be hmited, so that the unauthorized receiver will not be able to 
reconstruct the chaotic dynamics with accuracy necessary for decoding the message. 
Parameters of the encryption scheme can be determined using the following steps: 

• Decide what is the maximal number of samples N, that need to be transmitted. 
• Choose the smallest bin size Lq that will allow the authorized receiver to decode 

the message with a low decoding error rate in the presence of channel and circuit 
noise. 

• Determine the minimum value of the unauthorized receiver dynamics recon- 
struction mean square error Cmin that can be allowed without compromising the 
message. 

• Choose a small enough value for the parameter 6 that will ensure that the unau- 
thorized receiver will not be able to reconstruct the dynamics with a reconstruc- 
tion error lower than Cmin by using Ns samples for dynamics reconstruction. 

We now demonstrate the proposed procedure for determining the parameters of 
an encryption scheme using a more specific example. 

• An encryption scheme is required to safely transmit up to NB = 25e6 samples. 
• We assume that the transmission power PT is limited to Pr — 13dB. By using 

an active/passive scheme in which the message component M is larger than the 
chaotic component X the power Pt of the transmitted signal is approximately 
the power M of the message component, so we choose M = —13db. 

• In our example we assume that the transmission channel adds Gaussian noise 
with standard deviation CTchannel   =   le — 3  {Nchannel   =  20jL05l0(crchonne()   = 
-60dB). 

• Our (arbitrary) design requirement is that the decoding error probability Pa en- 
countered by the authorized receiver will be Pa = 0.04. Because of the presence 
of channel noise with standard deviation achannei = le — 3 we need to set the 
distance L, between adjacent bins to L, = 4e — 3 in order to ensure decoding 
error rate Pa =0.04. 

• We assume that in order to maintain message security, the probability P„ that 
the unauthorized receiver will decide that the wrong message bin has been trans- 
mitted should be at least P„ = 0.6. Therefore the standard deviation of the 
unauthorized receiver reconstruction error should be 4e — 3 (emtn = —48dB). 

• Prom Fig.7.12 we find that if we use b = 0.2 then the largest cleaning fac- 
tor the unauthorized receiver can obtain by reconstructing the dynamics using 
Ns = 25e6 samples is C = 27dB. This largest value of the cleaning factor is ob- 
tained by using reconstruction embedding dimension De = 2 and averaging in a 
neighborhood of size size Le = 0.016. In our specific implementation the chaotic 
component power is X = —21dB therefore the power A'' of the reconstruction 
error is N = X — C = —21 — 27 = —48dB. This reconstruction error equals emin 
and satisfies our requirements for security. 

7.5 Public (asymmetric) Key Encryption 
using Distributed Chaotic Nonlinear Dynamics 

Pubhc key encryption schemes are designed to solve the problem of sharing a se- 
cret encryption/decryption key between transmitter and receiver through a secure 
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channel In public key encryption there is no need to use a secure channel to share 
a key, and it is assumed that all data exchange between transmitter and receiver is 
public. In public key encryption schemes a public key is used to encrypt a message 
at the transmitter and a private key which is different from the public key is used to 
decode the message at the receiver. In classical cryptography which is based on the 
integer number theory several public key encryption schemes have been developed: 
RSA [9], Elliptic curves [21], El-Gamal [8], Knapsack [22], McAlliece coding theory 
based system [31], etc. 

Until recently, only secret key chaos based encryption schemes have been de- 
veloped. In [15] and [16] we proposed the first pubUc key encryption scheme that 
is based on continuous state chaotic distributed dynamics rather than on integer 
number theory. In this section we give an overview of this new method. 

7.5.1 Overview of Distributed Dynamics Encryption 

The Distributed Dynamics Encryption (DDE) scheme is illustrated by Fig.7.15. A 

s.(n) 

s, (n) 

r(n+l)=FR(r(n),s,(n)) 

s,(n)=GR(r(n)) 

t(n+l)=FT(t(n),s,(n)^) 

s.(n)=GT(t(n)) 

Receiver Transmitter 
Fig. 7.15. Public and private keys of DDE Private key: Ffl(»),GH(«),r(n). Public 
key: Fr(»),GT(»),Sr(n),St(n). Known only to transmitter: t(n),m. Prom [16]. 

chaotic nonlinear system is distributed between transmitter and receiver that are 
coupled bi-directionally through a communication channel. The entire dynamics, 
which are comprised from the receiver and transmitter, is dissipative and converges 
to an attractor. The sub-system at the transmitter is public and so are the coupling 
signals. The receiver sub-system is kept private and is assumed to be known only 
to the authorized receiver. A message is modulated by altering the dynamics of 
the transmitter which in turn results in a shift in the attractor position (Fig.7.16). 
The authorized receiver can simulate the entire dynamics ofF-line, before the real 
transmission begins, and establish the attractor positions that correspond to the 
transmission of specific data symbols, (in binary transmission, '0' or '1'). When the 
real transmission takes place, the dynamical system is initialized with a random 
state, and then is iterated long enough to allow the state trajectory to converge 
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Fig. 7.16. A message is modu- 
lated by altering the parameters 
of the transmitter which results 
in a change in the attractor posi- 
tion. For instance, in case of bi- 
nary transmission the transmitter 
parameters axe altered between two 
sets of values. The entire dynamical 
system converges to one of two at- 
tractors that correspond to trans- 
mission of '0' or '1' 

to one of the allowed attractors. The authorized receiver that knows the positions 
of all allowed attractors can decode the message by estimating to which of them 
the trajectory has converged (Fig.7.17). It is important to note that since the au- 
thorized receiver has no access to the trsinsmitter state, it must perform decoding 
in a reconstructed embedding space generated from time-delayed values of its in- 
ternal variables and/or transmitted signals [5]. The unauthorized receiver does not 

Trajectory 

Fig. 7.17. Message decoding in a 
reconstructed embedding space: A 
trajectory starts at a random ini- 
tial state and converges to one of 
two attractors that correspond to 
transmitted '0' or '1'. Message is 
decoded by choosing the attractor 
closest to the trajectory after tran- 
sients. Prom [16]. 

know the private receiver dynamics, hence she does not know the positions of the 
eillowed attractors. Therefore, she cannot tell to which of the allowed attractors the 
trajectory converged, and can not decode the transmitted bit. 

In Fig.7.15, the DR dimensional receiver state r(n) = [n (n),..., ron (n)] is given 

by 
r(n+l)=FH(r(n),S((n)). (7.35) 

The receiver dynamics Fii(«) and state r(n) are parts of the private key and are 
known only to the authorized receiver. 

The transmitted scalar Sr{n) is given by the function 

sr{n) = GR{r{n)). (7.36) 

Signal Sr(n) is pubhc and can be observed by an unauthorized receiver. The function 
GR{») is a part of the private key and is known only to the authorized receiver. 

The DT dimensional transmitter state t(n) = [ii (n),..., IDT(")] is given by 

t(n-M) = FT(t(n),Sr(n),m(n)). (7.37) 

The dynamics FT(») is a part of the pubhc key, therefore the unauthorized receiver 
can use it to decode the message. t(n) and m[n) are explicitly known only to the 
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transmitter, and both authorized and unauthorized receivers need to estimate these 
variables. The authorized receiver modulates the parameter m (m = 0,1 in case of 
binary data transmission) which results in a change in the position of the attractor. 

The transmitted scalar signal st{n) is given by 

st{n) = GT(t(n)). (7.38) 

where st{n) and GT{») axe pubUc and are known to both authorized and unautho- 

rized receivers. 
The authorized receiver does not know the transmitter state t(n) and needs 

to reconstruct the transmitter state in a time delay embedding phase space s(n) = 
{st{n),..., st{n-{d-l)) in order to recover the attractor position in the reconstructed 

phase space e(n) = f r(n), s(n) j . 

The initial state of the transmitter is initialized with a random value at the 
beginning of each transmitted bit. The system is iterated long enough to allow the 
trajectory to converge to one.of the allowed attractors. The authorized receiver de- 
codes the message by determining to which of the allowed attractors the trajectory 
converged (Fig.7.17). 

The receiver dynamics is altered frequently (preferably at the beginning of each 
transmitted bit), so the positions of the attractors corresponding to '0' and '1' 
changes. By altering the receiver private dynamics various cryptanalysis attacks 
that are discussed in section 7.5.3 can be thwarted. 

The main distinction of DDE from traditional pubUc key encryption scheme is 
that it allows an analog implementation. It is assumed that at least the transmitter 
is implemented using analog components. In such case the public key is determined 
at the manufacturing phase. The pubUc key is the structure of the transmitter that 
is available to all, and is not necessarily a stream of bits that needs to be transmit- 
ted. Of course, the hardware transmitter can have several pubUc parameters that 
may determine the transmitter dynamics, but this is only an option. 

The coding efficiency of DDE is measured in the number of information bits 
per transmitted bit: E = log2{M)/{ni * Tut), where M is the alphabet size (we 
can use more than two attractors), m is the number of bits representing a single 
sample of Sr or st, and Tbu is the number of samples until the system converges 
to the attractor. Note that the system does not need to accurately converge to the 
attractor. It only has get closer closer to the correct attractor than to the wrong 
one(s). Large separation between the attractors will require smaller Tbit- Tut is also 
.determined by the rate of convergence of the d3mamical system, which is determined 
by the largest negative Lyapunov exponent. 

7.5.2 Advantage 
of the authorized receiver over unauthorized receivers 

In DDE as in all public key encryption schemes, the advantage of the authorized re- 
ceiver over the unauthorized receiver is computational and not information theoretic. 
An unauthorized receiver has the same amount of information about the message as 
the authorized receiver, however in order to use the available information to decode 
the message the unauthorized receiver is required to use computationally unfeasi- 
ble algorithms while the authorized receiver can use the private key to extract the 
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message information using a computationally feasible algorithm. In section 7.5.3 we 
show that in DDE the unauthorized receiver can in principle decode the message 
without knowing the private key which is the receiver part of the distributed system, 
however she is forced to used computationally unfeasible algorithms to do so. 

In DDE the advantage of the authorized receiver over the unauthorized receiver 
is that the authorized receiver knows the entire system, so it can simulate the sys- 
tem off-line before transmission begins for both m = 0 and m = 1 and determine 
the the corresponding attractors. Knowing the position of the attractors enables the 
authorized receiver to decode the message by determining which of them is closest 
to the trajectory after convergence, as illustrated in Fig.7.17. 

Since the positions of the attractors depend on both transmitter and receiver 
parts of the system, an unauthorized receiver which does not know the dynamics 
of the receiver can not simulate the system off-line and estimate the attractor po- 
sitions. During the actual message transmission, the system is initialized with a 
random state and is allowed to converge to one of the allowed attractors, however 
once convergence is obtained, the bi-directional transmission is stopped. For trans- 
mission of the next bit the dynamics is again initialized with a random state, and the 
receiver dynamics is altered so that previous attractor positions are no longer rele- 
vant. Therefore, no matter how long the transmission is, the unauthorized receiver 
cannot reconstruct the entire attractor structmre. Furthermore, unlike the autho- 
rized receiver, the eavesdropper observe only a single transient which correspond to 
a particular value of m, and do not observe transients for other values of m at a 
given set of system parameters. 

7.5.3 Cryptanalysis of DDE 

In this section we describe various methods that can be used to attack DDE, and 
suggest strategies to protect against such attacks. In most of the attacks described, 
it is assumed that the unauthorized receiver will attempt to decode the message by 
using methods that do not rely on the knowledge of the receiver private dynamics. 

Known ciphertext attack: Detecting shifts in the attractor 

The unauthorized receiver may attempt to reconstruct the whole system attrac- 
tor from the (pubUc) transmitted signal st{n) based on the time-delay embedding 
method. By detecting the shift of the attractor due to the message encryption (m = 0 
and m = 1), it is possible to extract the message without the knowledge of the re- 
ceiver dynamics. 

Protection: 
In traditional chaotic switch keying, the receiver and transmitter have identical 
structure that has to remain the same from bit to bit. That allows an unauthorized 
receiver to reconstruct the attractor in the embedding space of st{n) using famiUar 
phase space embedding technique. The DDE scheme allows to change the secret dy- 
namics of the receiver at any time, in particular at the beginning of every transmitted 
bit. Since for a single bit only a short transient from, a random initial condition to 
the attractor is transmitted, if the receiver parameters change for every transmitted 
bit, an eavesdropper simply does not have sufficient data to reconstruct the dynam- 
ics. Furthermore, even if the attractor position could be identified, an eavesdropper 
is not able to tell whether the end point lies on the '0' attractor or the '1' attractor. 
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Known ciphertext attack: Duplicating the transmitter subsystem 

Attack: 
An unauthorized receiver may attempt to build two systems duplicating the trans- 
mitter subsystem and feed them with the observed signal Sr(n) while setting the 
message parameter of one system to '0' and another to '!', hoping that the output of 
one of these two auxiliary systems will match the observed signal st(n). That would 
uniquely determine the bit being transmitted. 

Protection: 
The transmitter dynamics is chaotic, and neither the transmitter state nor the sig- 
nal st{n) are completely determined by Sr(n). In order to reproduce the transmitted 
signal stin), an eavesdropper in addition to Sr(n) needs to know the initial condition 
t(0) with impractically large precision. The state of the transmitter is randomized 
at the beginning of every bit, and this state is unknown to everybody (including the 
receiver). For different random initial states of the transmitter, the transmitter will 
produce different outputs st{n) thus making this attack impossible. 

Known ciphertext attack: Reconstructing receiver dynamics 

Attack: 
The unauthorized receiver can use stin) and Sr{n] to reconstruct the receiver dy- 
namics which constitutes the private key. After doing so it can simulate the dynamics 
off-line and find the location of the attractors, and use the same methods that the 
authorized receiver use to decode the message. 

Protection: 
There are two cases to consider: In one case, the receiver dynamics are assumed to be 
completely unknown. Reconstruction of the receiver dynamics can be made unfea- 
sible by changing frequently the parameters at the receiver. This will not allow the 
unauthorized receiver to collect enough data to reconstruct of the secret dynamics of 
the receiver. By using high dimensional receiver dynamics Dr the number of samples 
required to reconstruct the private dynamics can be increased. In the second case, 
the attacker knows the general structure of the secret receiver dynamics, and the 
private key would be the specific parameters used to implement the known "type" 
of dynamics. The difficulty in reconstructing the secret dynamics of the receiver will 
depend on the sensitivity of the dynamics to changes in parameters, and the size of 
the possible parameters space. Cryptanalysis in this case will be similar to the crypt- 
analysis of traditional chaotic secret key encryption scheme. Yet, the DDE scheme 
is more secure, since the receiver can alter the system parameters at will, while in 
traditional secret key chaotic encryption scheme the dynamics remains constant. 

Known ciphertext attack: Solving transmitter equations 

Attack: 
The receiver dynamics FT(»),GT(») and the transmitted signals (st(n),Sr(n)) are 
public and known to the unauthorized receiver. So she may attempt to solve the 
following set of equations in order to recover the random initial state t(0) of the 
transmitter and the message bit m: 
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st(0)     =Gr[t(0),mj 

t(l)      =Fr('t(0),s.(0),m') 

: (7.39) 

StiDr)    =GTitiDT),m\ 

t{DT + I) = FT(t{DT),Sr{DT),m\ 

Protection: 
By using high dimensional transmitter dynamics FT(«) the unauthorized receiver 
will need to solve a set of DT equations that are high order polynomials of the un- 
known initial state t(0). The set of equations will contains expressions of the form 

[ti(O)]'' ^ where p is the order of the transmitter state component U in the dynamics 
FT(»)- For instance, by using p = 4 and DT = 10 the unauthorized receiver will 
need to solve a set of equations with polynomials of order (tj)^'"'*^'® . By further 
increasing p or DT this calculation can be computationally unfeasible. 

Ciphertext 
attack: State quantization and Maximum Likelihood estimation 

Attack: 

The chaotic dynamics may contain channel and circuit noise that make the 
dynamics stochastic. An unauthorized receiver may attempt to generate a Hidden 
Markov Model (HMM) of the transmitter pubUc dynamics for each possible value 
of the message m, and obtain a Maximum LikeUhood (ML) estimation fh of the 
message m. The decoded niessage will then be given by 

m=   max pfsf"' Im). (7.40) 

In order to generate the Hidden Markov Model the unauthorized receive will need 
to quantize the transmitter state in a time delay reconstructed embedding space 
(Fig.7.18), and to estimate the state transition probabilities as well as the observa- 
tion probabilities of the model (Fig. 7.19). 

Protection: 
In the process of generating a Hidden Markov Model for the receiver dynamics, the 
unauthorized receiver will need to quantize the transmitter state, which in turn will 
result in quantization noise. The quantization noise will blur the separation between 
the transmitted waveforms that correspond to the transmission of '0' or '1' as illus- 
trated in Fig. 7.20. In order to decode the message the quantization noise should 
be kept small by using small quantization bins. However, using small quantization 
bins will result in an impractically large number of states in the Hidden Markov 
Model. In [16] and [18] we obtained a lower bound for the number of states N, in 
the Hidden Markov Model that is required in order to maintain quantization noise 
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'Fig. 7.18. Quantization of a Z?e dimensional 
reconstructed embedding phase space of size 
LT using quantization bins of size Lq. Prom 
[16]. 

5,(1)     ^,(2)    ^,(3) 

-t- \ 

'1' attractor 

0' attractor *0' attractor 

Fig. 7.19. An unauthorized 
receiver may estimate state 
transition and observation 
probabilities of the transmitter 
public dynamics and generate 
a Hidden Markov Model of the 
transmitter dynamics to obtain 
a Maximum Likelihood esti- 
mation of the message using a 
Viterbi algorithm. Prom [16]. 

Fig. 7.20. A clear separation be- 
tween the attractors in a continu- 
ous transmitter phase spEice t can 
be blurred by quantization noise 
in a quantized phase space t used 
for generating a Hidden Markov 
Model. Prom [16]. 

below a level that will enable message decoding by the unauthorized receiver. The 
number of states Ns is given by 

-1 DT 

Ns > 
LT ■ y} ■mM^-^') (7.41) 

where LT is the transmitter state dynamical range, DT is the transmitter state di- 
mension, Pu is the decoding error rate encountered by the unauthorized receiver. Tut 
is the number of iterations the dynamics is allowed to converge from a randorn initial 

state to the attractor, A is modulation amplitude and Q{x) = -^ J^^ e~'^dz. 
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In Section 7.5.5 it is shown that the number of states Na can be made large 
enough to make decoding using quantization of transmitter state computationally 
unfeasible. Large A^^ can be achieved by choosing small,modulation parameter A 
and large transmitter dimension DT- 

Known 
plaintext attack: Attractor reconstruction using trajectory ends 

Attack: 
Each converged trajectory end Ues on one of the allowed attractors. If the unau- 
thorized receiver posses a collection of pairs of trajectories and the corresponding 
transmitted bit (plaintext), it can use the trajectory ends to reconstruct the positions 
of the attractors that corresponds to the transmission of '0' or '1' as illustrated in 
Fig. 7.21. In following transmissions the unauthorized receiver can decode the mes- 
sage by determining to which of the reconstructed attractors an observed trajectory 
converged. 

Fig. 7.21. Plaintext at- 
tack: Reconstruction of 
attractors positions using 
end points of the tra- 
jectories that lie on the 
attractors. iProm [16]. 

Protection: 
Such an attack can also be avoided by altering the receiver dynamics at the be- 
ginning of each transmitted bits. By doing so, the trajectories ends that have been 
collected by the unauthorized receiver during transmission of previous bits can not 
be used to decode future bits. 

7.5.4 Effect of time delays and unsynchronized samples 

A lack of proper synchronization may affect the decoding capability by altering the 
position of the attractor. For some dynamics, a severe lack of synchronization may 
even cause the system state trajectory to diverge. There are two main reasons for 
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de-synchronization: loss of symbols due to noise and round-trip time delay. The for- 
mer can be mitigated by adding a synchronization protocol that makes sure that 
no symbols are lost in the transmission, or if a symbol is lost, forces the system 
to re-transmit it. The latter can be improved either by including the time delay in 
the simulated dynamics of the system to determine the positions of attractor, or by 
Umiting the bandwidth so the time delay becomes negUgible. In practical implemen- 
tations, the transmitter can transmit a block of data, then wait for reception of the 
block of data from the receiver before transmitting another block of data. 

7.5.5 Simulation results 

DDE scheme was simulated using a coupled map lattice (CML). The transmitter 
dynamics are described by 

tj{n + 1)    = djs-i ■ t]-xin) + djj ■ i|(n) 
+dj,j+i ■ tj+i(n) + ej,j ■ \tj(n)| ,j ^j) 

J = 1,..,DT 

and the receiver dynamics are given by 

nin -1-1)= Oi.i-i • r?_i(n) -I- ai,i ■ 7-|(n) 
+ai,i+i-rf+i{n) + bi-sUn) + Ci    , (7.43) 

i = 1,..,DB 

The receiver and transmitter are coupled through the signals 

DR 

sAn)^Y,hi.rUn)    , (7-44) 

and 
Dtr 

st(n)=w^|tj(n)|-l-A-m   . (7.45) 

We'used the transmitter and receiver dimension DT = 12, DR = 2 and the pa- 
rameters a, b, c, d, e, /, g, h, q and A, were chosen such that the dynamics was chaotic. 
All details of our implementation and values of parameters can be found in [18] and 

[19]- 
We allow convergence (typical) from a random initial state to the attractor (Fig. 

7.22) for Tut = 50 iterations during the transmission of each message bit. The deci- 
sion to which of the allowed attractors the system has converged was based on the 
last last 10 endpoints of the converging trajectory (Fig. 7.17). 

As mentioned in the previous section, the protection against reconstruction of the 
attractor using the end points of many transient trajectories is obtained by altering 
the receiver dynamics frequently. Plotted in Fig.7.24 are three different attractors 
obtained by altering the receiver dynamics while keeping the transmitter dynamics 
constant. Even if the transmitter parameters are kept constant while transmitting 
the same bit the attractor will be different for each bit due to the change in the 
receiver dynamics. Also, initializing the state of the transmitter with a random value 
at the beginning of each transmitted bit enhances security as illustrated in Fig.7.23 
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Fig. 7.22. Projection of the attrac- 
tors that correspond to transmis- 
sion of '0' and '1' (green and red) 
on a 3Z) reconstructed embedding 
phase space generated using time 
delays of the transmitted pubUc se- 
quence (st(n),Sf(n—l),st(n —2)). 

Blue-'O' attractor 
Red -'1' attractor 

Figure 7.25 shows the dependence of the decoding error rate Pa encountered by 
the authorized receiver on the modulation parameter A in Eq. (7.45). Pa was esti- 
mated by simulation. The parameter A should be large enough in order to maintain 
low decoding error rate Pa encountered by the authorized receiver, yet no too large 
so that the number of Hidden Markov Model states A^, (estimated using Eq.(7.41) 
will be exceedingly large. 

Using analog components to implement the dynamics results in component noise. 
Figure 7.26 illustrates the the number of states N, that the unauthorized receiver 
needs to use in a Hidden Markov Model in order to maintain low level quantization 
noise as a function of the transmitter circuit component noise. Transmitter circuit 
component noise was simulated by adding a Gaussian noise with variance V to each 
of the transmitter state components U. 

Larger component noise will require the use of a larger parameter A in order 
to ensure sufficient separation between the attractors corresponding to the trans- 
mission of '0' and '1'. The modulation parameter A was chosen to ensure that the 
decoding error rate Pa encountered by the authorized receiver is less than 0.01. 
Na was calculating using Eq.(7.41) assuming that the error rate Py. encountered by 
the unauthorized receiver should be at least Pu = 0.2. The noise added to each 
transmitter state component U had Gaussian distribution with variance V. 
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Fig. 7.23. At the beginning of each 
bit the transmitter state is initial- 
ized with a random value. Top: is 
a limit cycle attractor. Bottom: the 
superposition of multiple trajecto- 
ries starting at a random initial 
state and converging to the same 
attractor shown at the top plot. 

It is evident from Fig.7.26 that the noise in the analog components negatively 
affects the security of the DDE scheme. 

7.5.6 DDE versus traditional public key encryption schemes 

• Underlying concept: 
Traditional public key encryption schemes rely on one way functions which are 
relatively simple to calculate in one direction yet their inverse can be made ex- 
ceedingly difficult to compute. DDE relies on a completely different concept: 
We c£in design a nonlinear dynamics that is simple to simulate and difficult to 
reconstruct analytically/numerically from a set of observations. By keeping part 
of the dynamics private an unauthorized receiver can not simulate the system 
and is required to use computationally expensive analytic and numeric methods. 

• Continuous number field: 
Traditional public key encryption schemes are defined over integer number fields 
while DDE is defined over continuous number fields (simulated digitally using 
float or double numbers). This results in a very different underlying mathematics 
for cryptanalysis. 

• Hardware Implementation: 
Traditional public key encryption schemes can only be implemented using dig- 
ital hardware. DDE is defined over continuous number fields and therefore can 
be implemented directly using analog components. Direct implementation using 
electrical/optical analog components may result in fast/inexpensive communi- 
cation devices. 
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Fig. 7.24. A protection 
against attractor recon- 
struction by the unautho- 
rized receiver is obtained 
by altering the receiver 
dynamics frequently (each 
bit) which results in a 
change in the attractor 
position. Three different 
attractors obtained by 
altering the receiver pa- 
rameters while keeping 
the transmitter parame- 
ters constant. 

Fig. 7.25. Dependence of Bit Er- 
ror Rate (BER) encountered by the 
authorized receiver on the modula- 
tion parameter A which affects the 
amount of separation between the 
'0' and '1' attractors. Prom [15]. 
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Fig. 7.26. The number of states 
Ns required by a Viterbi algorithm 
based attack as a function of the 
variance V of the component noise 
at the transmitter circuit. Prom 
[15]. 

Algorithmic variety: 
Traditional pubUc key encryption schemes are based on a hmited pool of algo- 
rithmic procedures. Most schemes are based on some kind of exponentiation over 
Galois Fields. DDE represents a novel concept that can be implemented using a 
rich variety of different functions . 
Block merging of encryption and modulation: 
In traditional public key encryption schemes the digital encryption block is im- 
plemented separately from the analog modulation block. In DDE both encryp- 
tion and modulation can be implemented using analog hardware as a single 
block. The input to this block would be a message stream and the output would 
be an encrypted broadband modulated signal. 
Operation under noisy conditions: 
Traditional public key encryptions schemes do not allow any noise to interfere 
with the ciphertext. An error in a single ciphertext bit (after error correction 
stage) will result in a change in most (typically all) corresponding message bits. 
In DDE noise is assumed to be part of the encryption and decrjrption processes, 
and a certain amount of noise is allowed. 
Key management: 
In traditional pubhc key encryption schemes the public key is distributed before 
transmission starts. In DDE the signal Sr from receiver to transmitter is a part 
of the public key and therefore in fact the pubhc key is continuously updated 
during transmission. 
Coding efficiency: 
In the present implementation DDE is less efficient than traditional public key 
encryption schemes. Since we need to generate the whole transient towards an 
attractor to transmit one information bit, the amount of information needed to 
be transmitted far exceeds the number of message bits. However, since DDE is 
conceptually different than traditional pubhc key encryptions schemes, it may 
prove to be more secure and easier to implement for specific applications. 
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7.6 Summary 

The history of chaotic secure communication is short, and its future is uncertain. In 
spite of their problematic security, chaotic encryption schemes definitely provide a 
certain degree of privacy, and a large range of applications require privacy and not 
necessarily a very high level of security. A clear advantage in using a chaotic encryp- 
tion scheme is that it does not require digitization of data and can be implemented 
using analog (electrical/optical) components. The rapid growth in wireless commu- 
nications may create a new type of apphcations that will require cheap encryption 
of undigitized continuous waveforms using simple analog hardware. 

In this chapter we summarized the current status of algorithms of chaos-based 
communications with an emphasis on their security. Cryptanalysis of chaos-based 
encryption schemes so far has mostly been qualitative and not sufficient to guarantee 
security. In this chapter, we described a more quantitative approach to the crypt- 
analysis of a particular class of chaos-based algorithms using so-called active/passive 
decomposition. The cryptanalysis is based on the reconstruction of the local average 
dynamics as described in [13, 14, 35]. We quantify the security of an encryption 
scheme by estimating the number of samples that can be safely transmitted without 
allowing an unauthorized receiver to reconstruct the dynamics with an accuracy that 
is sufficient to compromise the message. Our quantitative analysis shows that even 
the chaos based communication schemes that have been broken can still be consid- 
ered secure as long as the number of transmitted samples A'', does not exceeds a cer- 
tain threshold. We showed that the number of samples that can be safely transmitted 
can be increased by using a fine grained modulation with large dynamical range. This 
is in contrast to the typical approach which attempts to modulate a message that is 
as small as possible, so it can be better masked by the chaotic component. In our ap- 
proach, not only the chaotic component masks the message, but also the randomized 
message component is used to mask the chaotic component. The larger the dynami- 
cal range of the message, the more samples the unauthorized receiver needs in order 
to accurately reconstruct the chaotic dynamics. We ensure that the large dynamical 
range of the message will not allow the unauthorized receiver to reconstruct the 
masking chaotic dynamics with lower accuracy by keeping the message modulation 
fine grained. Further, we show that by using conditional Lyapunov exponent A with 
smaller absolute value, increases the number of samples that can be safely transmit- 
ted, and requires the unauthorized receiver to reconstruct the chaotic dynamics in 
a reconstructed embedding phase space of larger embedding dimension De- 

The quantitative approach presented here is only the first step towards build- 
ing confidence in the security of chaos based encryption schemes by putting the 
cryptanalysis of these schemes on a rigorous mathematical foundation. Much work 
remains to be done to reach the stage of cryptanalysis typical for modern digital 
encryption schemes based on integer number theory. 

In this chapter we also introduced the first public key encryption scheme which 
is based on chaotic dynamics. It defined over continuous number fields. As such, 
it does not require digitization of the data, and can be implemented using analog 
(electrical/optical) components. 

We showed that various cryptanalytic attacks can be avoided by initializing the 
dynamics with a random state and by altering the receiver private dynamics at the 
beginning of each transmitted bit. Also, the larger the attractor embedding dimen- 
sion, the more secure the scheme is. Possible candidates for a simple high-security 
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implementation can be dynamical systems with long time-delayed feedback or large 
coupled map lattices (see, e.g., [20]). These systems may exhibit chaos of poten- 
tially very high dimension and may prove to be useful for future DDE schemes with 
extremely high level of security. 

Proving the security of a new encryption scheme may take years of breaking and 
reinforcing cycles. DDE has been recently proposed and therefore it may take time 
until its security is thoroughly tested. It may happen that the specific implementa- 
tion we used in our simulation to demonstrate the concept of DDE will be broken by 
some cryptanalysis attack, however we beUeve that due to the rich variety of dynam- 
ics that can be used to implement DDE it is Ukely that schemes that are robust to a 
specific attack can be found. We encourage the reader who is interested in detailed 
derivations and reasoning of our analysis to read our publications [16] [15] [19] and 
[18]. 
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8.1 Introduction 

Utilizations of chaotic signals in communication systems [1] and radars [2, 3] axe the 
most promising engineering applications of the dynamical systems with a chaotic 
behavior. Thanks to chaotic dynamics such systems generate aperiodic signals with 
adequate noise-hke properties and, at the same time, two identical chaotic systems 
can synchronize in the sense that one system follows the chaotic trajectory of the 
other system [6]. Such synchronization is a key element of many chaos based commu- 
nication schemes. The inexpensive chaos generators designed for these appUcations 
usually reUes on the analog circuitry that implements one of the known ODE sys- 
tems or nonlinear maps demonstrating a chaotic behavior. Since the parameters of 
analog electronic elements that control the parameters of the dynamical system have 
some dispersion and are susceptible to the temperature and other fluctuations the 
design of two analog chaotic circuit with identical parameters is quite a challenge. 

In order to overcome the problem of the parameters fluctuation many engineer- 
ing apphcations use finite (digital) systems which are more robust and reliable than- 
continuous (analog) ones. Now many analog systems have been replaced by a digital 
one to accomplish an equivalent task. Such an approach would be also very attractive 
for implementation of chaos generators. However, a dynamical system approximated 
with a finite state (digital) system loses the ability to produce a chaotic behavior. 
Therefore, it is impossible to use finite systems for applications similar to those im- 
plemented with chaotic systems unless one can induce a "chaotic-like" behavior in 
the dynamics of the finite system, for instance, by randomly perturbing it. 

From application point of view it is desirable to develop an approach for the 
design of inexpensive digital system that can repHcate the chaotic dynamic of an 
analog system in the high frequency range. Such a design can be transported to 
Field Programmable Gate Arrays (FPGA) or a similar technology assuming that 
the number of the finite states is not very large, but sufficient for the replication of 
chaos in a given application. This paper discusses the theoretical issues related to 
the finite state implementation of chaotic one-dimensional maps paying particular 
attention to the case of a large but limited number of states. 

Our method to design chaotic-like digital systems specifies a Markov chain whose 
stationary distribution approximates a given invariant measure /i for a map / of the 
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interval / = [0,1). We show how to construct finite partitions {Ji} of / such that the 
transition probabiUties p{i\j) = nifiJj) n Ji)MfiJj)) define a Markov chain with 
{i} the set of states and a stationary distribution with probabiUties that coincide 
with the the weights given by the /-invariant measure fj, to the subintervals Ji. The 
method further provides a coding function that translate states of the finite system 
to points in the interval. In this way, the random sequences generated by the finite 
system produce pseudo-orbits with the same statistical properties than a /i-typical 

orbit of /. 
In Sec. 8.2 partitions for the Markov chain are constructed for maps that have 

a generating partition. The random transition function is expressed as simple arith- 
metic formula that can be implemented as a shift register. Coding functions are 
explicitly constructed in Sec. 8.4 for the one-parameter family of tent maps. 

8.2 Random finite approximations 

First, we propose a sampling scheme to discretize (/,/,A»)- Let P := {xo = 0 < 
xi < ••• < a;, = 1} be a finite set of partition points in the interval / = [0,1). 
The subintervals J< = {xi,Xi+i), i = 0, 1, ..., s - 1, provide a partition of I. For 
a point X € [0,1), denote by [X]P the index of the subinterval in I where x lays 
in, i.e, [X]P = i ii X € J*: [x]p is the value of a: as sampled by P. The set of 
sample indices is -d := {0,1,..., s - 1} and addition (modulo s) on A is assumed 
(denoted +,). The sampling function [-JP : / -> /i is not invertible and given 
[x]p = i our guess about x will be Xi, denoted by x(») = ^i- The sampled version of 
function f, fp : A-* A, is defined to be fp{i) = [/(a;<)]p. Functions that axe con- 
tinuous and bounded on / can be approximated by its sampled versions by letting 
\P\ := max{a;i+i - Xi :  i = 0,..., s - 1} —» 0. 

Lemma 1. Let f : I ^ I be continuous on I. Then, for every e > 0 there exists P 
such that for each i e A, \f{x) -x° fp(i)\ <£ whenever x is such that [X]P = i. 
Proof. Let [X]P = i. By triangle inequality \f{x) - x ° fp{i)\ < \f{x) - /(XMP)! + 
1/ ° XIAP -xlf ° x[^]p)\- Then, by uniform continuity of / there is a \P\ such that 
|/(a:)-/(x[a;lp)| < e/2, for every x£l. Thus, \fix)-x°fp[x]p\ < e/2+|P|. Lemma 
is proved since there exists a partition P of diameter \P\ such that e/2 -I- |P| < e is 
also satisfied.     D 

Due to the finite character of the state set A, all orbits 

io,fp{io),---,fp{io),--- (8-1) 

of the discrete system (A, fp) are eventually periodic. However, the sampling of a 
chaotic orbit 

x,fix),...,f"ix),... (8.2) 

of /, yields the seemingly random sequence of integers 

ro,ri,...,r„,... (8.3) 

where ?•„ = [f"'{x)]p. Thus, the dynamics of the discretized version {A,fp) is far 
from approximating the dynamics of the original system (/, /, /j,), e.g., after a while 
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the orbits (8.1) and (8.3) will have completely different statistical behaviors (even 
though fp approximates / closely in the sense of Lemma 1) 

Regular motions are avoided if the deterministic finite system is perturbed ran- 
domly at every time step. Instead of the deterministic transition i >-> fp{i) we 
consider a random transition i *-* j with transition probabiUty p{j\i). We express 
the random transition from state i as the random transition function F{i) that takes 
values on A and such that V[F{i) = j] = p(j|i). Thus, the random finite system 
{A,F,p) is a Markov chain. The stochastic matrix of the chain will be denoted by 
M = (mij) with entries nnj = p{j\i)- When the matrix M is aperiodic, the station- 
ary distribution of the chain is the only positive vector p = (po, • • ■, Ps-i) such that 
pM = p[4]. 

We want that any sample sequence io,ii,... ,in, ■■ ■ generated by the random fi- 
nite system {A, F,p) certainly "looks hke" a typical orbit of (J, /, p), in the following 
sense. First, the sequence {in} is to be interpreted as the pseudo-orbit {x„ = x(«n)} 
in / and we want each pair (a;„, a;„+i) close to the graph of /. Thus, we ask {A, F,p) 
to satisfy the following condition. 

(wl) For any e > 0 there is a partition P such that the random tran- 
sition function satisfies |/(a;) - x ° ^(«)l < e with probability 1 for each 
i € A and [x]p = i. 

Second, the frequency at which points in the pseudo-orbit {a;„} touch the subinter- 
val Jk e P should coincide with the weight given to Jk by the /-invariant measure 
H. For this we ask {A,F,p) to satisfy the following condition. 

(w2)   For every k and i € A 

1 *~^ 
/i(Jfc) = lim 7 V<5fc(F^(i)),    with probability 1. (8.4) 

3=0 

A discrete random system {A, F,p) is said to constitute a random finite approx- 
imation for the system (/, /, /i) if it satisfies conditions (wl) and (w2). 

Condition (wl) ensures that the random transition function i t-^ F{i) is e-close 
to the actual map f{x), with probability 1. A sufficient condition on transition 
probabilities p{i\j) that makes condition (wl) valid is given in Lemma 2 below. 

In condition (w2) we require the stationary distribution of the Markov chain to 
approximate fi, up to a resolution given by the mesh \P\. To satisfy condition (w2) 
the problem is to find a partition P of J and transition probabilities p{F{k)\k) such 
that equality in (8.4) certainly holds. Observe that condition (w2) is not a condition 
valid in the limit \P\ —* 0 only but it should be satisfied by partitions with positive 
diameter |P|. 

Let us write the random transition function in the form F{i) = fp{i) -\-a n, with 
n a random variable such that Vlfp(i) +s n = j] = p{j\i). Condition (wl) to hold 
requires that the strength of the random perturbation ri be sniall enough, i.e., as 
the sampling mesh \P\ is made finer the strength of the random perturbation n has 
to become weaker. This condition on the random variable u, sufficient to make (wl) 
true, is expressed in the following. 

Lemma 2. Let f : I ^ I be continuous. For each P let there exist a smallest integer 
R = R{P) e A such that lim|p|_o \P\R = 0 and V[ri >R]=0, for each i. Then, 
(wl) holds. 
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Proof. By definition F{i) = [/(X(«))]P + rt for each i e A. Thus, by Lemma 1, for 
any e > 0 there exists a partition P such that 

\f{x) - x(Fm = \m - x([/(x«)]p+^01 
< |/(^) - X([/(XW)1P)I + Mfiximp) - Xilfiximp + ri)\ 
<ri\P\ + \fix)-x(fpii))\     <     \P\R + £/2 

whenever [X]P = i. The assumption on the random variable n allows us to take \P\ 
small enough as to have \P\ R < e/2, sufficient to make (wl) true.     D 

Thus, condition (wl) is satisfied if the support of transition probabilities be- 
comes sufficiently srnall (relative to \P\-^) as \P\ -> 0. Condition (w2) is the main 
matter of the following sections. 

8.2.1 Pertinence of the random finite approximation 

Assume that {A, F,p) approximates (/, /, n) in the sense of conditions (wl) and (w2). 
Let io, ii, • • •. V> • • -be a random orbit of F. Then, the pseudo-orbit xo, Xi, ..., 
Xj, ..., with Xj = x{h)> mimics a typical orbit of (7, /,/i). 

First, by condition (wl), for any e > 0 there is a partition P such that 
\f{xj) - Xj+i\ < e, for each j = 0, 1, .... In other words, the pseudo-orbit (xj) 
follows closely an actual typical orbit of /. 

Second, the time average along a pseudo-orbit provides a good estimate of the 
averages with measure fi. We have the following. 

Lemma 3. Let xo, Xi, ...be a pseudo-orbit of {I, f,/J.). Let the function ip be con- 
tinuous and bounded on I. Then, for every e > 0 there exists P such that 

1 *~^ f 
lim - V(p(xj)-     dfitp <e 

Proof. Observe that ifi{xj) = tpp{ij), where ipp := ip ox is defined on A. Consid- 
ering that (a) any function (pp : A -^ R can be written as I^P = J^^eA ^''^i' where 
ak = <pp{k) € R and that (b) 5k[-]p = ij* is the indicator of the interval A, then 
by assumption (w2) we have that 

^ t-i , 

Eak lim -y25k{ij) = Y] "fe / dfiij^,. 
keA j=o keA      •" 

Thus, 
1 *"' 1 '"' /■ 

lim -'Y'^{xj)= lim -'Y'^fpiij) =  I dti'ppo[-]p. 
t_oc < ^ t-.cot j^^ Ji 

Then, by Lemma 1 there exists a partition P with sufficiently small diameter \P\ 
such that 

Um - 
t—♦oo t 

y^ip{xj)-     dn>p  <      dfi\ip-ifipo[-] \p\ <£• 
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2.5n 

Fig. 8.1. Invariant density of the logistic map approximated by (empty circles) 
averages along a deterministic orbit and (asterisks) along a random time series. 

Lemma 3 is illustrated by Fig. 8.1. The invariant density for the logistic map, 

f{x) = 4x(l - x), is p{x) = f7rv/a;(l - xU [7]. Fig. 8.1 shows, in asterisks, the 

approximate density computed by using a pseudo-orbit that is 10® time-steps long. 
For comparison, in Fig. 8.1 we also show (as empty circles) the numerical estimates 
for n{Jk), obtained with an actual orbit of / (10® time-steps long, too). The con- 
tinuous line in Fig. 8.1 is the graph of the exact invariant density p{x). Details of 
the random finite approximation of the logistic map are given in the next section. 

8.3 Maps with a generating partition 

The logistic map f{x) = 4a;(l-x), with the invariant density p{x) = f7ri/a:(l - x\ 
is used to illustrate how to obtain the approximating Markov chains. 

As sampling mesh we use the dynamical refinement Pfc, defined recursively by 

Pfc+i = U r\x), 
x€Pk 

(8.5) 

of an initial set of generating partition points Pi = {0,0.5,1}. In (8.5) f~^{x) = 
{(1 - v/l - x)/2, (1 + Vl - x)j2}. If 0 and 1 are excluded from Pi, the number of 
partition points is doubled at each iteration (8.5). Thus, #Pfc = 2* + 1. 

At the ifc-th refinement, the set of states for the Markov chain is A = {0, ..., 
2* - 1}. Points in Pk are indexed in increasing order: 0 = xo < xi • • • < Xa = 1, 
where s = 2'', specifying the coding function i K-+ X(«) = ^«- Correspondingly, 
Ji = [xi,Xj+i), i = 0, ... 5 — 1. Next, we determine transitions. 

Denote by Kj, j = 0,1, ... 2*""^ - 1, the subintervals of the (fc - l)-th refine- 
ment. For each Kj there exists just one i e A such that Kj = JeU Je+i. Since 
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f{Jj) is an interval of the {k - l)-th refinement, then there exists only one integer 
0 < ^ < 2*° such that for every j € {0,1, ... ,2''-1} we have that /(J,) = JeUJe+i- 
This determines the allowed transitions to he j >-^ e a.nd j >-^ £ + 1 if and only if 
/(Jj) = JeU Jt+i. In terms of partition points, there axe two cases to determine 
the value of £ for a given j. One is when f'{xj) > 0. The vale of £ is given by 
f{xj) = XI. The only other case is when f[xj) < 0. The value of £ is given in this 
case by f{xi) = xe+2. Thus, the random perturbation is F{j) = £+r with transition 
probabilities determined by the weight of each interval Je+r, r = 0,l, relative to the 
weight of the interval f{Jj): p{£ + r\j) = ^i{Je+r)/Kf{Ji)) andp(i|j) = 0 otherwise. 
In terms of the density function p the positive transition probabilities are given by 

r'+'-+^ dx p{x) 
p(^ + rb-)=^g;.^^^(^)    ,        r = 0,l. (8.6) 

The logistic map is locally eventually onto [8]. Thus, the Markov chain with tran- 
sition probabilities (8.6) is aperiodic and the stationary distribution p has entries 

Pj = dx p{x) = t^iJj) ,    j = 0, ...2 
JxA 

(8.7) 

as a direct verification of the equation pM = p shows us. 
The Markov chain satisfies conditions (wl) and (w2). Indeed, the transition 

probabilities (8.6) are such that r[ri > 2] = 0 and then conditions in Lemma 2 that 
make (wl) valid are satisfied. On the other hand, the stationary distribution (8.7) is 
just condition (w2). Then, all the impUcations in Sec. 8.2.1 are valid for this random 
finite approximation of the logistic map, e.g.. Fig. 8.1. 

Observe that as partition Fk is made finer (larger values of k) the transition 
probabilities in (8.6) get closer to 1/2, each. Indeed, for any e > 0 there exists 
K >0 such that 

piXi) <£ 
2'=(a;i+i -Xi) 

for each Xi € Pk with k> K. 
Next, we systematize the previous construction for an arbitrary map / with a 

generating partition {Ji : i 6 S). Let w := WQ- ■■Wk-i € 5* be a word of length 
A; > 1. Each subinterval Jwo is refined to 

k 

Jwo---Wk-i  •" I   I /     (J-^i) ■ 
i=0 

When Jwo--wk-i 7^ 0 we say that world w is admissible and we denote by A the set 
of all admissible words of length k. 

For lu e /i the point x{'">) = Xw = inf Jw is a partition point (x is called the 
coding function). The successor of word w is the word w'^ £ A such that x^+ is the 
smallest of partition points for which x-u, < x^+. Then J^ = [xw,x^Jr) and the set 
of partition points is P = {x„ :  u € A}. 

To specify the transition function, fp : A -^ A observe that any partition 
point Xw is mapped by / to another partition point a;„ = f{xw). The corresponding 
transition in A is w >-* v. Let symbol r e 5 be such that inff(JwQivi-wi,-i} = 
ini J^^...wk-ir- Thus, the transition function is fp{w) := lfixw)]p = wi ■ ■■■Wk-ir = 
V. 
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In the chain transitions w >-^ v aie allowed if and only ii r £ A is such that 
/(JiDotui—ujfc-i) n Jwi-wk-ir 7^ 0- The random transition function F{w) is specified 
by letting r (the last symbol of word v) to be a random variable with conditional 
probability 

'^^ '   '      1^ 0 otherwise, 

for every pair, w and v, of admissible words. The stationary distribution p of the 
Markov chain with transition probabiUties (8.8) has components pw = n{Jtu), w £ A. 
Conditions (wl) and (w2) are satisfied and the chain approximates (/,/,/i). 

In conclusion, if the map is locally eventually onto and it has a generating par- 
tition, then steps above lead us to an aperiodic Markov chain that approximates 
the map (in the sense of (wl) and (w2)). Then, the main problem in approximating 
any map by a Markov chain is to find a generating paxtition. In the case of Markov 
maps this is immediate. 

8.3.1 An Eirithinetic version of the random transition function 

A representation of admissible words u = UQ- ■ -Uk-i, that is adequate to express 
arithmetically the random transition function F is to denote word u by the integer 
u := 53^0 q^Uk-i-j = sxu, where q is the cardinality of the generating partition 
(e.g., g = 2 for the logistic map). The transformation of words uoui ■ • • Uk-i >-+ v := 
ui • ■ • Uk-ir corresponds to the transformation u>-^v = qu+,r. Then 

F{u) :=gu+s r, (8.9) 

whe|-e r := Vk-i has probabiUty 7r{r\u) := p{v\u). Formula (8.9) can be imple- 
mented as a shift register. A sample sequence UQ, ..., u„, .. .of (8.9) produces the 

pseudo-orbit X(MO)> ■ • •. x(Mn). ■ • -of (-^./.M)- 

8.4 Approximations for the tent maps 

The general construction of the previous section is appUed to the tent maps 

T.(x) = |^/^°'      .,      •;   °-"-^^?  , (8.10) 
^ '      \ 1/Ai - x/Ai,    if   Ao < X < 1 

where parameter Ao € (0,1) and Ai = 1 - Ao. Lebesgue measure is invariant. 
For the tent maps the set of points Pi = {0, Ao, 1} specifies a generating par- 

tition with basic subintervals Jo := [0, Ao) and Ji := [Ao,l). Partition points are 
XQ = 0 and xi = AQ. 

8.4.1 The coding function 

Given the binary word u = UQ- ■ -Un-iUn, let us determine the location of point 
x(u) =: Xu in /, relative to the point a;uo-«„-i- To do it we observe that 
Xu e Juo-"n-i«n C Juo-"n-i ^nd theu the position of Xu relative to x„o-u„_i 
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is determined as follows. Let e„_i := 0(wo • • ■ w„_i) = 0 if the number of I's in word 
uo • • • u„-i is even and 9n-i = 1 otherwise. If 9n-i = 0 then the total number of 
inversions in the dynamical refinement of the basic interval Juo up to J«o--«n is even 
and so there is no net inversion. When this is the case, the two subintervals that 
refine Juo--un-i have the same order as the two basic subintervals in /. Then 

a;uo--"n-i"r. = 3;uo--"n-i+""'^o|Ao-u„_i|,     if 6n-l = 0. 

When 9n-i = 1 the total number of inversions is odd and the order of the two 
subintervals is inverted. Then 

3^U0"*Un™l'^n ■■Xuo-Ur,-l+{^-'^n)Xl\Juo-Ur,-i\,      if   On-l-l- 

The value of x„ in either case is written as 

'-UO'"«n-l"n 

(0 
\Ju 

if 
if 

Un = 6n-l 

Un 7^ Bn-1 
(8.11) 

Let to < w if Xw < Xu- A direct consequence of (8.11) is that uo ■■-Wn-i^n-i < 
uo---Un-i[l - 9n-\\- This relation puts on order in A. For instance, 000 < 001 < 
Oil < 010 < 110 < 111 < 101 < 1000. Thus, lexicographical order is not followed. 
The effect of the inverting action of the negative-slope branch of TA on encoding is 
illustrated in Fig. 8.2. 

(a)               . 7 \ y 
/ -V 
/ A \ 

 ->^X   / / 

/ 

//I \ 
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1 
1 p\ 

10 (b)                 / 
\ / 
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01 
/ / 

/ 
\ 

00 

/ 

/ 

01 11 10 10 11 01 oov 

00 
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01 11    10 
001      010     111    100 

000 oil      no   101 

Fig. 8.2. The interval Ju precedes Jio by the effect on coding of the inverting 
action of the negative slope branch of the tent map (lexicographical order is not 
obeyed). 

The length of intervals is determined by the contraction rate of each of the 
branches of 7\~^ and is not affected by the inverting action of the branch with a 
negative slope: |Juo-u„_i| = 11^=0 ^^k- Thus, the coding map is 

n-l 

A;=0 
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n-l j 

= Xouo + ^ ttj+iXsj fj Xuk (8-12) 
j=0 fc=0 

where an = Wn if ^n-i =0 and an = 1 —v,„ otherwise. 
For each A; > 0, the set Pfc(A) := {xu : u e {O,!}*} U {1} has |Pfc(A)| = 

maxIA'', (1 - A)*} and #Pfc(A) = 2*= +1. For instance, a direct application of (8.12) 
yields P3(A) = {0 < A^ < A== < A^ - A=^ + A < A < A^ - 2A2 + 2A < A^ - A + 1< 
A^ - A^ + 1< 1}. For A = 1/2, P3(l/2) = {j/2^ : j = 0,1,... ,8}. 

8.4.2 The symmetric tent map 

Consider map (8.10) with A = 1/2. The coding map (8.12) reduces to xiw) = 
J2'^Zo 2~'~''u'fe. As invariant measure fj, consider Lebesgue measure. For a word u of 
length k the weight of the interval J„ is given by its diameter. Since the dynamical 
partition happens to be a uniform one, we have that f^iJu) = (1/2)*. Thus, ac- 
cording to (w2), the stochastic matrix M of the Markov chain on A gives the same 
probability to all transitions. The random transition function that approximates the 
symmetric tent map, with Lebesgue measure, is 

F{w) = 2 w + r, (8.13) 

where word w is represented by the integer value w := sxw, s = 2'' and r is se- 
lected at random out from {0,1}, with probability 1/2 each, independent of state 
w. Pseudo-orbits are provided by coding function x- 

8.4.3 Singular invariant measures 

We may proceed in the opposite way. First we specify a stochastic matrix M for the 
chain and then make use of (w2) to get the estimation of a measure on / for Tx ■ In 
the limit \P\ -^ 0 the measure is invariant but not necessarily continuous. 

A great variety of invariant measures for Tx can be explored numerically by 
just changing matrix M. To illustrate this scheme, consider the non symmetric tent 
map (8.10) with A = 0.75 and consider a matrix M that gives the same weight 0.5 to 
O's and I's. With this choice of M all allowed transitions u; i-n; are given the same 
probability p(v|w) = 0.5. Typical numerical results are shown in Fig. 8.3. For an 
initial state w e A = {0,1}®, a randomly generated sequence w, F{w), F{w), ..., 
F'~^(tu), with t = 10^, was used to compute the numbers M„ = X)*=o Sv{F^{w))/t 
as estimates of the second member in (8.4). The asterisks in Fig. 8.3 mark, for each 
ue A, the points {xu,N.u) with Nu = Z)„:j,„<i„ MJ. 

8.5 Concluding remarks 

We have shown how to specify Markov chains that approximate a chaotic map 
(/, /, fi). The method enables one to design a digital chaos generator that replicates 
the behavior of a chaotic map. Designs use a sufficiently large, but Umited number 
of finite states and, as the result, supports an inexpensive implementation of the 
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0.5 

Fig. 8.3. An invariant distribution, n[0,x), for the non symmetric tent map with 
A = 0.75 (Example 8.4.3). 

generator suitable for utilization in chaos based communication systems and other 
applications. 

The digital implementation of the chaotic systems requires an external source of 
noise to perturb the finite state system. In some communication systems such noisy 
perturbations can be given by a properly pre-coded information data stream. An 
example of such chaos based communication system is considered in [5]. 
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Numerical Methods for 
the Analysis of Dynamics and Synchronization 
of Stochastic Nonlinear Systems 

How-Foo Chen and Jia-Ming Liu 

Electrical Engineering Department, University of California, Los Angeles 
Los Angeles, CA 90095-1594 

Summary. The most important numerical tools needed in the analysis of chaotic 
systems performing chaos synchronization and chaotic communications are discussed 
in this chapter. Basic concepts, theoretical framework, and computer algorithms are 
reviewed. The subjects covered include the concepts and numerical simulations of 
stochastic nonlinear systems, the complexity of a chaotic attractor mieasured by 
Lyapunov exponents and correlation dimension, the robustness of synchronization 
measured by the transverse Lyapunov exponents in parameter-matched systems and 
parameter-mismatched systems, the quality of synchronization measured by the cor- 
relation coefficient and the synchronization error, and the treatment of channel noise 
for quantifying the performance of a chaotic communication system. For a dynami- 
cal system described by stochastic differential equations, the integral of a stochastic 
term is very different from that of a deterministic term. The difference and connec- 
tion between two different stochastic integrals in the Ito and Stratonovich senses, 
respectively, are discussed. Numerical algorithms for the simulation of stochastic 
differential equations are developed. Two quantitative measures, namely the Lya- 
punov exponents and the correlation dimension, for a chaotic attractor are discussed. 
Numerical methods for calculating these parameters are outUned. The robustness of 
synchronization is measured by the transverse Lyapunov exponents. Because perfect 
parameter matching between a transmitter and a receiver is generally not possible in 
a real system, a new concept of measiuring synchronization robustness by comparing 
the unperturbed and perturbed receiver attractors is introduced for a system with 
parameter mismatch. For the examination of synchronization quality, the correla- 
tion coefficient and the synchronization error obtained by comparing the transmitter 
and the receiver outputs are used. The performance of a communication system is 
commonly measured by the bit-error rate as a function of signal-to-noise ratio. In 
addition to the noise in the transmitter and the receiver, the noise of the communica- 
tion channel has to be considered in evaluating the bit-error rate and signal-to-noise 
ratio of the system. Approach to integrating the linear and nonlinear effects of the 
channel noise into the system consistently is addressed. Optically injected single- 
mode semiconductor lasers are used £is examples to demonstrate the use of these 
numerical tools. 
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9.1 Introduction 

In developing a nonlinear dynamical system for chaos synchronization and chaotic 
communication, several important issues ranging from basic dynamical characteris- 
tics to system performances have to be studied. Besides experimental measurements 
and characterization, various numerical tools are generally needed for a thorough 
study of the system. Numerical simulation is usually a necessary approach to gaining 
a complete picture of various dynamical characteristics of a nonlinear system and 
predicting the dynamics of the system under certain operating conditions. Many 
parameters and operating conditions, while not easily controllable precisely in ex- 
periments, can be precisely prescribed in numerical simulations. Even in the experi- 
mental approach, it is also very important to use appropriate numerical methods to 

. analyze the experiment data for a variety of purposes, such as the verification of the 
chaotic states, the analysis of the complexity of the observed chaos, the qualification 
of the achieved chaos synchronization, and the characterization of the system per- 
formance. The required numerical methods for these studies cover several aspects, 
including the nonlinear dynamics of a chaotic oscillator generating a chaotic output, 
the characteristics of the chaotic output, the feasibility of chaos synchronization for a 
proposed system, the robustness of synchronization, the quality of synchronization, 
and the performance of the system. 

Any physical system always contains some intrinsic noise. Noise in a nonlinear 
dynamical system is not simply additive to the system dynamics but is an integral 
part of the dynamics. The dynamical state of a nonlinear system can often vary with 
the level of the noise in the system. When considering a communication system in re- 
ality, the effect of noise on many system performance indicators, such as the bit-error 
rate (BER), is a key issue that needs to be addressed. For a communication system 
that utilizes nonUnear dynamics, the effect of noise on the system performance can 
neither be fully understood nor correctly quantified without considering the non- 
linear interactions between noise and system dynamics. Both intrinsic noise of the 
nonliiiear devices and noise of the communication channel have to be considered. 
Because noise is random and nondeterministic, the Riemann-Stieltjes integrals for 
solving deterministic differential equations cannot be used for the numerical analysis 
and simulation of a noisy nonUnear system that is described by differential equations 
containing stochastic noise terms. Thus, the numerical methods for the analysis and 
simulation of the dynamics of a stochastic nonlinear system are nontrivial and have 
to be carefully formulated. In Section 9.2, the general concepts of a stochastic differ- 
ential equation and its correct integral are first discussed, followed by the introduc- 
tion of proper numerical algorithms for implementing the analysis and simulation of a 
system described by stochastic differential equations. The numerical method for the 
integration of channel noise in a communication system is discussed in Section 9.5. 

Because a chaotic waveform generated by a transmitter is used in a chaotic com- 
munication system as the message carrier, the verification of its chaotic nature and 
the characterization of its complexity are both needed in this application. Various 
numerical methods for the analysis of chaos in the time domain, the frequency do- 
main, or the phase space have been developed. In the time domain, the Lyapunov 
exponents can be calculated for a chaotic state to quantify the sensitivity of the state 
to the initial conditions. These parameters indicate the predictability, or rather the 
unpredictability, of the chaotic trace evolving in time. In the frequency domain, a 
chaotic waveform is characterized by a broadband spectrum that can be found by 



9 Numerical Methods for Analysis of Dynamics         231 

taking the Fourier transform of its time series. In the phase space, a chaotic state is 
characterized by a strange attractor of a fractal dimension. Several different defini- 
tions of chaotic attractor dimension are used to measure the complexity of a chaotic 
waveform. One is the correlation dimension that increases with the complexity of 
the chaotic state. The numerical methods for calculating the Lyapunov exponents 
in the time domain and the correlation dimension of the chaotic attractor in the 
phase space are discussed in Section 9.3. 

While the complexity of a chaotic waveform is important, the ability to stably 
synchronize two nonUnear dynamical systems serving as transmitter and receiver, 
respectively, is a key issue for synchronized chaotic communications. Theoretically, 
perfect synchronization requires a perfect match in the parameters of the transmitter 
and the receiver being synchronized. While allowing for perfect synchronization, per- 
fect parameter matching does not guarantee the stability of synchronization against 
noise or any other form of perturbation. The robustness of chaos synchronization 
can be examined by finding the transverse Lyapunov exponents of the synchronized 
chaotic trace. Perfect parameter matching is generally not possible for real systems. 
Therefore, the concept of transverse Lyapunov exponents for perfect synchronization 
has to be modified for real systems that have parameter mismatch. These concepts 
and the numerical methods developed for quantifying the robustness and quality of 
synchronization are discussed in Section 9.4 

All of the numerical methods discussed in this chapter focus on nonUnear sys- 
tems that are described by differential equations though some of them can be gen- 
eralized to systems described by mapping equations, such as the tent map or the 
logistic map systems. Optically injected semiconductor lasers are used as examples 
to demonstrate the numerical methods addressed in this chapter. The dynamics and 
synchronization of such lasers are thoroughly discussed in Chapter 9.6. The examples 
in this chapter demonstrate the application of the numerical methods to these lasers. 

9.2 Numerical 
Simulation of Stochastic Differential Equations 

It is necessary to consider noise in the simulation of a realistic system because noise 
always exits in any physical system. For a nonlinear dynamical system, such as a 
semiconductor laser, noise is not simply a linear addition to the dynamics but is 
an integral part of the dynamics. The expression of noise is subject to the nonlin- 
earity in the system on the one hand, but noise also affects the dynamics of the 
system on the other hand. For a communication system, noise is a key factor that 
determines the performance of the system. Specially, because the communication 
systems discussed here are nonlinear systems, the effect of noise on the system per- 
formance is also nonUnear. The method of deaUng with channel noise in traditional 
communication systems cannot be used in chaotic communications. 

The difference between the simulation of a regular differential equation and that 
of a stochastic differential equation is that noise is always random and nondeter- 
ministic. When solving a stochastic differential equation, the actual value of noise 
at any moment is not known. The effect of noise can only be evaluated through an 
ensemble average. Therefore, the rule of the Riemann-Stieltjes integral that treats 
the integrand as a deterministic function of time does not apply in the integration of 
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a stochastic differential equation that contains one or more noise terms. For this rea- 
son, the numerical method for solving stochastic nonlinear differential equations has 
to be treated with extra care. Instead of the Riemann-Stieltjes integral, a stochastic 
integral is considered in the numerical analysis. 

In general, there are two different methods to calculate a stochastic integral, 
namely the Ito integral and the Stratonovich integral. The Ito integral assumes that 
the correlation time between random processes is zero; it is designed for calculating 
a stochastic integral with white noise. The Stratonovich integral assumes that a 
correlation exists between random processes at different moments; it is designed for 
color noise. The difference between the Ito integral and the Stratonovich integral can 
be very significant [1]. Which integral has to be chosen depends on the correlation 
characteristic of the noise under consideration. Detailed discussions regarding these 
integrals are presented in this section. 

Semiconductor laser systems are used as examples in this chapter to demonstrate 
the numerical concepts. Because the semiconductor lasers functioning as the chaotic 
oscillators have spontaneous emission as the noise source, all of the equations that 
describe the nonlinear dynamics, the chaos synchronization, and the chaotic commu- 
nication are stochastic nonlinear differential equations. In general, the noise sources 
of semiconductor lasers include the optical noise from spontaneous emission and the 
carrier noise. The optical noise is white Gaussian noise, and the carrier noise is color 
noise. The carrier noise is ignored in the numerical analysis of a single-mode laser 
because this narrow-band color noise is contributed mainly by the partition noise of 
the side modes [2, 3]. Therefore, when single-mode semiconductor lasers are consid- 
ered, only optical noise from spontaneous emission with a white Gaussian nature is 
included. The discussions in the following are thus hmited to white Gaussian noise 
sources. 

9.2.1 Langevin equation 

The rate equations of a system with white noise sources can be generaUzed in the 
following form of stochastic differential equations, known as the vector Langevin 
equation [4, 5, 6, 7, 8, 9, 10]: 

, k 

^ = Mx,t) + ^ffi,(x,tK(t), (9.1) 
i=i 

where i = 1, • • • ,m is the dimension index of the differential equation, and j = 
1, • • ■ ,ifc is the index of the stochastic sources. In this equation, both fi(x,t) and 
gij{x,t) are deterministic functions but nj{t) represents a stochastic process. This 
equation was provided by Langevin to explain the Brownian motion besides Ein- 
stein's explanation, which is a special case of the Fokker-Planck equation. The 
stochastic term nj{t) is independent white Gaussian noise that has the following 
properties: 

{nj{t)) = 0, (9.2) 

{ni{t)ni{t-r)) = 5ij5{r), (9.3) 

where (•) means ensemble average. Because of 5ij on the right-hand side of (9.3), 
(ni{t)nj{t - r)) is an autocorrelation function. For demonstration purpose, the dis- 
cussions are focused on a one-dimensional Langevin equation with a single white 
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(9.4) 

Gaussian noise term, i.e., a scalar Langevin equation, as follows: 

^ = f{x,t) + g(x,t)n{t). 

The discussions on the scalar Langevin equation can be generally applied to the 
vector Langevin equation. 

For the differential equation written in the form of (9.4) above, we would suppose 
that n{t) is integratable and thus the integral 

W{t) = I n{s)ds (9.5) 

exists. This integral is actually a Wiener process, denoted by W{t), which belongs to 
a larger subclass of the stochastic process known as the Markov process, or simply 
Markovian. This means that a Wiener process is memoryless. The Wiener process 
has the following properties: 

W{Q) = 0, (9.6) 

{W{t)) = 0, (9.7) 

Wax[W{t) - W{s)] =t-s,   for all 0 < s < t, (9.8) 

where Var[-] stands for variance. From this standard definition of the Wiener pro- 
cess, we obtain the relationship that Yai[W{t)-W{s)] = E{[W{t)-W{s)f} = t-s 
because {W{t)) = 0, where £{■} stands for expectation value. One of the impor- 
tant characteristics of the Wiener process is that it is not differentiable even in the 
sense of the mean-square hmit [8, 9]. This property can be seen by examining the 
convergence of its derivative [9]: 

W{t + h)-W{t) {[Wit + h)-W{t)f) 
h? 

1 
h' 

and, therefore. 

lim 
W{t + h)-W{t) 

(9.9) 

(9.10) 

As we can see here, the derivative of W{t) diverges. The paradox here is that W{t) 
is the integral of n(t), but itself is not differentiable even in the sense of the mean- 
square limit. 

Because x{t) is a real physical observable but the time derivative of x{t) is not, 
the fact that W{t) is not differentiable means that, mathematically speaking, a 
Langevin equation does not exist. Its use is only in the sense of physical intuition. 
The question here is the following: If a Langevin equation does not exist in the 
mathematical sense, can it be modified to be self-consistent? By examining some 
properties of the Wiener process W{t), it is important to understand that the Wiener 
process is not a stationary process in both the strict and the wide senses: As we 
know, the conditional probability of the Wiener process is [10]: 

p{Wi,ti\Wi-i,ti-i) = 
ti-l) 

exp 
Witi - ti-i) 

(9.11) 
■v/47r£>(ti 

where D specifies the increasing rate of its variance [10], which is 2Dti. For the 
Wiener process discussed here, we have D = 1. By choosing the initial condition 
p(Wo,fo = 0) = 5{Wo), the probability density for f > 0 is 
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Pi{W,t) = jp{W,t\Wo,to = 0)<5(Tyo)dW'o = ^exp (-^) . (9-12) 

which is dependent on time. Therefore, it is not a stationary process in the strict 
sense. Prom the probability density pi {W, i), we can also prove that the first moment 
vanishes, (H^(t)) = 0, and that {W{ti)W{t2)) = 2Dmm{ti,t2). Prom here, it can 
also be concluded that it is not a stationary process in the wide sense, either. 

However, the increments, AWt^ ,t2=Wt2-Wti, of the Wiener process is station- 
ary. The Wiener process can be represented as a continuous sum over subsequent 
independent increments: 

W{t) = J2{AWt,^,-t,). (9-13) 
i=l 

The integral W{t) = /* dW{s) as defined by the sum of the increments of the Wiener 
process is then well-defined. Then, the integral of (9.4) in the form of 

x(t) - x{to) = f fix, s)ds + I g{x, s)nis)ds (9.14) 
Jto Jto 

can be interpreted consistently by a replacement of n{t)dt, which is made by directly 
following the interpretation of the integral of n{t), as the Wiener process W{ty. 

dW{t) = W{t + dt) - W{t) = n{t)dt. (9.15) 

The integral equation in (9.14) can then be rewritten as: 

x{t)-x{to)= f f{x,s)ds+ f g{x,s)dWis), (9.16) 

where f{x, t) is called the drift term of the stochastic integral equation, and g{x, t) 
is called the diffusion term. Under this replacement, the integral for n(t) can be 
defined through the integration of dW{t). Equation (9.16) is named as a stochastic 
integral equation. 

The stochastic integral expressed in (9.16) is very different firom a deterministic 
Riemann-Stieltjes integral. To simpUfy the discussion, let us consider the integral in 
the form of ^  ,. 

x{to + h)- x{to) = /        u{s)ds, (9.17) 
Jto 

where h is a very small time interval and the integrand u{t) can be either a de- 
terministic function or a stochastic process. When it is a deterministic function, 
u{t) = f{t), then 

x{to + h)- xito) ^ f{to)h. (9.18) 

That is to say that Ax oc h. However, when u{t) is a stochastic process, the result 
is very different. Por example, let us assume that u{t) is a white Gaussian process 
with a unity standard deviation that u{t) — n{t). The displacement x{to + h)-x{to) 
is then obtained as the following: 

rto+h rto+h 
xito + h)- xito) = /        nis)ds =  /        dWis) 

Jto Jto 
- AWto+h,to 

^VhY, (9.19) 
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where y is a Gaussian variable with a zero mean and a unity standard deviation. 
This result can be realized by the fact that the average of AWto+h,to is zero, and 

Vax{AWt,+H.to) = {{AWt,+H,tof) = h. ■ (9.20) 

As is obtained in (9.19), the displacement. Ax = x{tQ + h) — x{to), is proportional to 
\/h in the case of a stochastic process. The integral proportional to \/h is the result 
of the integral in the sense of the expectation value. An example that demonstrates 
the difference between using Vh and h to solve a stochastic integral equation can 
be found in Ref. [1]. In contrast, the Riemann-Stieltjes integral yields the same re- 
sult proportional to h in both the regular convergence limit and the mean-square 
convergence limit. 

In this subsection, we clarify the critical difference between a deterministic in- 
tegral and a stochastic integral. Based on the different definitions to calculate the 
stochastic integral, however, we have stochastic integral in the Ito sense and that in 
the Stratonovich sense. Which one has to be used depends on the characteristics of 
the noise source, which in turn depends on the problem being considered. 

9.2.2 Stochastic integred 

The first integral on the right-hand side of (9.16) is a deterministic integral, which is 
a Riemann-Stieltjes integral, and it is not of concern here. Thus, we only focus on the 
second integral in (9.16) at this moment, which is stochastic. A discussion to cover 
the entire evaluation of the integral equation will be addressed in the next subsection 
when the concept of the stochastic integral is implemented in numerical analysis. 

Now suppose that the function u{t) is an arbitrary function, and W{i) is 
the Wiener process. The stochastic integral can be defined in a manner simi- 
lar to the Riemann-Stieltjes integral, but not the same in the sense of conver- 
gence criteria. We divide the interval [to,t] into n subdivisions with the order 
to < h < t2 < ... < tn~i < tn = t and define intermediate points Ti, where 
the function u{t) is evaluated, such that 

ti-i < Tj < U. (9.21) 

The stochastic integral can be defined as the limit of the partial sums: 

n 

The limit applied here is in the sense of mean-square Umit, which is defined as [9] 

lim 
n—*oo 

Sn- f u{s)dWis) 
Jto 

■■ 0. (9.23) 

This definition of the stochastic integral is more general than the second integral 
term in (9.16). It allows u{t) to be a stochastic process. 

The value of the stochastic integral depends on the choice of the intermediate 
points Tj. As a common example, let the function u{t) be replaced by the Wiener 
process W{t) [1, 8, 9]. When n = ii_i. 
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rW{s)dWis)^hwHt)-W\to)-{t-to)]. (9.24) 
Jto ^ 

However, when n = 2(*»-i +*>)i 

r W{s)dW{s) = hw\t) - W^'ito)]. (9-25) 
Jto ^ 

The stochastic integral (9.24) that is evaluated at n = U-i is an Ito integral, wherea^ 
the stochastic integral (9.25) that is evaluated at n = \{ti-i+U) is a Stratonovich 
integral. These two integrals clearly have different results. 

The Ito integral, denoted by (I) in front of the integral, is defined as 

(I) /* u[s)dW{s) = Jim fl u{U-^){W{U) - W{U-,)). (9.26) 
•'to i=l 

The Stratonovich integral, denoted by (S) in front of the integral, is defined as 

(S) /\(s)dTy(5)^Jim f:t.(^^^)(mii)-W^(*^-i))- (9-27) 

The major differences between the Ito integral and the Stratonovich integral are 

summarized in Table 9.1. 

Table 9.1. Characteristics of Ito integral and Stratonovich integral; 

-                       Characteristics     ' Ito Stratonovich~   ■ 

Relationship between u{U-i) and AWi,i-i    independent dependent 
Noise characteristics                                     true white noise      color noise 
Operation method Ito calculus     ordinary calculus 

It is important to know that the Ito integral is mathematically more satisfactory, 
but it is not always the physically natural choice. When the noise n{t) is realistic 
noise with a finite correlation time, not a white noise, it is more natural to choose 
the Stratonovich integral. Furthermore, the Stratonovich integral enables us to use 
ordinary calculus, which is not possible for the integral in the Ito sense. However, 
there is the following simple relationship between the integral equation solved in the 
Ito sense and that solved in the Stratonovich sense [8, 9], in which u{t) = g{x,t) is 
a deterministic function: 

x{t) = a;(to) + /' fix, s)ds + (I) / 9{x, s)dW{s), (9.28) 

xit) = x{to) + f fix, s)ds + (S) /' g{x, s)dWis), (9.29) 
Jto Jto 

with the modified drift term f{x, s) defined as follows 
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f{x,s) = fix,s)-l9{x,s)^^. (9.30) 

This relationship is only vahd in the integral equation, but not in the stochastic 
integral itself. When the diffusion term, 9{x,t), is a constant, the Ito integral and 
the Stratonovich integral are the same. This conclusion can be observed in (9.30) or, 
alternatively, from a logical intuition that a constant g{x, t) is always independent of 
AW{t). This is a very important characteristic that serves as an important guideline 
for programming the simulation of the differential equations of a noisy system. 

9.2.3 Numerical Algorithm 

It is usually easier to start the computer algorithm for the stochastic integral in the 
Stratonovich sense than in the Ito sense because the integral in the Stratonovich 
sense follows the ordinary calculus. However, it is still usually compUcated even in 
the Stratonovich sense. In order to apply the theory of the stochastic integral to the 
differential equations of a noisy nonlinear system, it is more practical to go back 
to the vector Langevin equation in the integral form, which can be obtained by 
integrating (9.1), with an additional assumption that gtj — Stjgj. This assumes that 
each dynamical variable, Xi{t), is contaminated only by a single noise source. 

To construct the algorithm, it is necessary to use a small time interval At = h 
in the integral: 

Xi{h)=XiiO)+ f  fi{x{t))dt+ f  gi{x{t))clWiit). (9.31) 
Jo Jo 

Note that it is necessary to carry out the expansion in terms of the powers of /i^'^ 
rather than in those of h because AWt+h,h oc h^^^. The expansion of Xi{h) can be 
obtained by the iteration method [4] as 

Xi{h) = Xi{0) + 6x1^^ + Sx] + (Jxf/' + 5x? + ■ • •, (9.32) 

where 

Sx^' = giZ,,i, (9.33) 

5x\ = fih +\Y. 9i,j9jZ,,iZ^,i, (9.34) 

^^T = J2{fi.39jZ2j-gi,jfjZ2,i) + ^Ylgi,jgj,kgkZi,iZi,jZi,k 
3 ■   },k 

+ 53 9i,jfjhZi,i + g 5Z 9i,3kgjgkZi,iZijZi,k, (9.35) 
j 3,k 

SXi   =   2 X] fi.sfjh^ "^ 2 ^ fi.393,k9kZ3,jk + 2 X! fi'ik939kZ3,jk 
3 3,k 3,k 

+ '^9i,3{[f3,kgk{Zi,iZ2,k - Zz^ik) - gj,kfk{Zi,iZ2j - Zs^ij)] 
3,k 

+-;^9j,kfk{hZi,iZij — Z3,ij)} 
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+ 24 '^9i,j9j,k9k,i9iZi,iZijZi,kZi,i 
j,k,l 

+ lj^9iJh9k[lfjihZi,iZi,k - Za.ik) + \Zi,iZ^jZ^,kY,9i,i9iZiA 
j,k ' 

+7n y^ 9i,jki9j9kgiZi,iZijZi,kZi,i 
24 ^ 

J,k,l 

+ -^^9i.igiJk9j9kZi,iZi,jZi,kZi.,i, (9.36) 
l,j,k 

where ft = /i(xo), 9i = »i(a5o), 9i,i = ^9i{xo), 9i,ik =  a^^m^9iixo), fij = 

gfr/i(a;o), and fijk = g^^Hxo). and ^i,i, Za,*, and Za.i,- are defined as follows: 

Z^,i = r dWi{t), - (9-37) 
Jo 

Z2,i = f\f dWi{s-^dt, (9.38) 

2r3,i,=  r \ f dWi{s) f dWj{s) 
Jo   IJo Jo 

dt. (9.39) 

As we can see above, the expansion is complicated. And it is still the integral in 
the Stratonovich sense rather than that in the Ito sense. However, when gi{x,t) is a 
constant, the terms in the expansion are reduced to the following simple expressions: 

5xl^'=giZ^,u (9-40) 

5xi   =fiK (9-41) 

Ja:f/^=^/,,,p,2,,,, (9.42) 

i 

5x1   = ^ E f'^ifi^'' + ^ E ki^9i9kZz.ik. (9.43) 
3 j,k 

We thus have 

3 

Si = giZi,i + E fi.393Z2,3 + ^ E fiJkgjgkZajk + ■■■■ (9.45) 
3 3,k 

Meanwhile, the stochastic integral in the Ito sense is the same as that in the 
Stratonovich sense when gi is a constant. Therefore, it is most desirable that the 
differential equations modeling a system contain only constant diffusion terms with 
Qi being independent of both x and t. In order to carry out the algorithm numer- 
ically, a further step has to be established to avoid pre-calculation on the partial 
derivative of/< in (9.41), (9.42) and (9.43). In general, Runge-Kutta method is used 
for this purpose. The detailed discussion can be found in Ref. [6]. 
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9.2.4 Example: 
Dynamics of Optically Injected Semiconductor Laser 

We now use a single-mode semiconductor laser subject to optical injection as an 
example to demonstrate the simulation of the stochastic differential equations. De- 
tailed discussions of the dynamics of this system can be found in Subsection 7.4.1 of 
Chapter 7. Here we concentrate on the mathematical aspects of formulating the dif- 
ferential equations for numerical simulation and the effect of noise on the dynamical 
characteristics of the system seen from the numerical results. 

The dynamics of a semiconductor laser subject to the injection of an optical field 
is mathematically modeled by the following coupled equations [11]: 

^ = --^A + i{u)o - ujc)A + ^(1 - ih)^A + r]Ai expi-int) + F^p,      (9.46) 
at 2 2 

^=J-^,N-^y\A\\ (9.47) 
dt       ed hujo 

where A is the total complex intracavity field amplitude of the laser at its free- 
oscillating frequency (JQ and N is the carrier density. The injection field has a com- 
plex ampUtude of Ai at an optical frequency of wi, which is detuned from the free- 
running frequency wo of the injected laser by a detuning frequency of fi = wi - wo = 
2irf. Other variables in these coupled equations are defined in Chapter 7. The noise 
term, Fep{t), which originates from the spontaneous emission of the semiconductor 
laser, is described by a complex Langevin source term, Fep{t) = Fr(t) + iFi{t). It is 
white Gaussian noise that is characterized by the following correlation relations [2,3]: 

{Fr{t)FAt')) = {F,{t)Fi{t')) 

{F.{t)Fit'))=:0, 

Rsp S{t -1') (9.48) 

(9.49) 

where Rsp is the spontaneous emission rate. The focus of the discussions in the 
following will be placed on the stochastic term of the spontaneous emission noise 
Fep(t). Other terms are all deterministic. 

By writing A in terms of its magnitude and phase as ^4 = |i4o|(l + a)e"'', and 
N as N = Noil +n), these two coupled rate equations can be transformed into the 
following three coupled equations [12]: 

da 
It 

dn 
It 

+ 
dtp 
It 

^''^°n-7p(2o-|-a^) 
7s-^ 

Ft cos (f + Fi sin ip 

_b 
2 

{l + a)+ C7c cos(27r/t -t- (p) 

7c7n ̂n-7p(2a-|-o') 

1    Fr sin (p — Fj cos ip 

1+^ \Ao\ 

_i7c_ 
1 + a 

sin(27r/t + ip) 

= -7sn - 7nn(l -I- o)^ - 7s J(2a -I- a^) 

+ ltyRj(^2a + a''){l + af. 
7c 

(9.50) 

(9.51) 

(9.52) 
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We can use an orthogonal transformation to further simplify the noise terms in (9.50) 
and (9.51) into Fa = {FrCOS'p +FiSmip)/\Ao\ and F^ = -(FrSin</7-FiCosv3)/|^o|, 
respectively, in which Fa. and F^ are still white Gaussian. However, the noise term 
in the phase equation (9.51) still contains a nonconstant factor of the form 

(9.53) 
1 + a{t) 

that depends on the variable a{t). Thus, recasting the coupled equations into the 
three equations given in (9.50), (9.51), and (9.52) does not result in the most con- 
venient form for numerical analysis when the laser noise is considered. 

Instead of the amplitude a and the phase <p, the real and imaginary parts of 
A/\Ao\ defined by A = \Ao\{a' + ia") can be used together with h defined by 
N = No{l + n) to recast the coupled equations into the following form: 

daf_ 
dt 

+ 

1 
2 

\Ao\ 

7c 7n - /   '2   I      112       1 \ -^—^n-7p(a   +a    -1) 
78^^ 

dar_ 
dt 

7c7n 

+ 
2 L7s^ 

l>lo|' 

n-7p(a   +a    -1) 

(a' + 6a") + ?7cCos(27r/i) 

(-6a' + a")-e7csin(27r/t) 

dh 
Ht 

= -7sn - 7nn(a'^ + a"') - yj{a" + a'" - 1) 

7c 

(9.54) 

(9.55) 

(9.56) 

Note that a' = (1 + a) cos ip and o" = (1 + a) sin ip, thus o'^ + o"^ = (1 + af, when 
connecting (9.54) and (9.55) to (9.50) and (9.51). As Fr and Fi have the white Gaus- 
sian characteristics given in (9.48) and (9.49) and \Ao\ is a constant, we find that the 
noise terms in these equations both have a constant coefficient of gt — \/i?Bp/2|^oP 
for I = 1,2 because 

Fr 

\Ao\ 

JL 
l^ol 

—^— ni{t) =gini{t), 
2\Ao\ 

Rep 

2\Ao\ 
"2(t) = 92n2it), 

where 

91 =92 
jfXsp 

2\Ao\^' 

{ni{s),nj{t)} =SijS{s-t), 

(mis)) = 0. 

(9.57) 

(9.58) 

(9.59) 

(9.60) 

(9.61) 

The constant coefficients gi and 92 for the noise terms reduces the complexity of the 
computer algorithm. Therefore, these coupled equations are preferred for the nu- 
merical simulation of a semiconductor laser subject to optical injection when noise 
is considered. 
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Detuning Frequency (GHz) 

Fig. 9.1. Bifurcation diagrams (a) with R^p = 0 and (b) with Rnp = 4.7 x 
10^* V^m~^s~^ of a semiconductor laser subject to optical injection with an in- 
jection parameter of ^ = 0.03 and a detuning frequency varying from -4 GHz to 4 
GHz. 

We use the bifurcation diagrams, shown in Figs. 9.1(a) and (b), to give an 
overview of the nonlinear eifect of noise on the different dynamical states of  
the system. This diagram is obtained by collecting the extrema of a{t) = ^/a'{t)' +a"(ty - 1 
for each operating condition. The numerical simulation is performed with ^ = 0.03 
and / varying from -4 GHz to 4 GHz. The diagram without the consideration of the 
intrinsic laser noise is shown in Fig. 9.1(a), and that with the consideration of the 
noise is shown in Fig. 9.1(b). The dynamics of this system follows a period-doubling 
route to chaos [12]. It is seen in Fig. 9.1(a) that the dynamics evolves from a stable 
locking state at / = -4 GHz through periodic states to chaotic states. When noise is 
present, it is observed in Fig. 9.1(b) that all the states are blurred by the noise, but 
some states have dramatic changes in their dynamical characteristics by the noise. 
For example, the stable locking states and the chaotic states can still be recognized 
in Fig. 9.1(b), but some periodic states in windows within the chaos region cannot 
be easily distinguished from the neaxby chaotic states. 

Here we use the chaotic state obtained at ^ = 0.03 and / = 0 GHz and the 
periodic state obtained at ^ = 0.03 and / = -0.4 GHz in one of the windows within 
the chaos region as examples to demonstrate the nonlinear effect of the noise to 
different dynamical states. The effect of the noise on the chaotic state at ^ = 0.03 
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20 0 20 
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Fig. 9.2. Nonlinear effect of intrinsic laser noise on the chaotic state at | = 0.03 
and / = 0 GHz: (a) Waveform, (b) attractor, and (c) optical spectrum are for 
Rsp = 0. (d) Waveform, (e) attractor, and (f) optical spectrum are for jRsp = 4.7 x 
10^* V^'m-^s-^ 

and / = 0 GHz is shown in Fig. 9.2. The waveform, attractor, and optical spec- 
trum in the absence of noise are shown in Figs. 9.2(a), (b), and (c), respectively. 
The corresponding plots for the system in the same operating condition but in the 
presence of noise are shown in Figs. 9.2(d), (e), and (f). By comparing Figs. 9.2(a), 
(b), and (c) with Figs. 9.2(d), (e), and (f), the effect of the noise can barely be 
recognized because the power of the noise is spread in the bandwidth of the chaotic 
state. In reality, the noise only adds some fluctuations to this chaotic waveform and 
its attractor. Therefore, it increases the correlation dimension of the chaotic state 
by contaminating the attractor. This aspect will be discussed in Subsection 9.3.4. 
This characteristic is quite general for the chaotic states in this system. 

However, the effect of the noise on some dynamical states can be dramatic if 
noise-induced order or noise-induced chaos takes place [13]. An example of such 
effect is demonstrated in Fig. 9.3 for f = 0.03 and / = -0.4 GHz. Each small 
plot in Fig. 9.3 corresponds to that in Fig. 9.2. In the absent of the intrinsic laser 
noise, the characteristics of this periodic state can be observed from its waveform, 
attractor, and optical spectrum, shown in Fig. 9.3(a), (b), and (c), respectively. 
However, when noise is present, we find that the system is in a chaotic state with 
completely different characteristics for its waveform, attractor, and optical spectrum. 
The examples shown in Fig. 9.2 and Fig. 9.3 demonstrate that the effect of the noise 
can be very different for different dynamical states. They show that the effect of noise 
on a nonlinear system is not simply linear and additive but can be highly nonlinear. 
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Fig. 9.3. Nonlinear effect of intrinsic laser noise on the state, which is periodic in the 
absence of noise but is chaotic in the presence of noise, at ^ = 0.03 and / = 0 GHz: 
(a) Waveform, (b) attractor, and (c) optical spectrum are for Rsp = 0. (d) Waveform, 
(e) attractor, and (f) optical spectrum are for Rap = 4.7 x 10^* V^m~^s~^ 

9.3 Characterization of Chaos 

The most fundamental characteristic of chaos is its sensitivity to the initial condi- 
tion of the dynamical system. When there is a small amount of deviation between 
two initial conditions, this small deviation will be exponentially enlarged as time 
evolves. The dynamical system then evolves into different conditions represented by 
different points in its phase space. This phenomenon is called sensitivity to the ini- 
tial condition. The corresponding divergence is measured by Lyapunov exponents. 
The entire trace of the dynamical system forms a ch£iotic attractor. Chaos occurring 
in nature is an attractor if the system is dissipative with a confined total energy. 

Because of this characteristic, a chaotic attractor in its phase space does not 
repeat itself. Therefore, the geometric structiu'e is usually fractal though soihe ex- 
ception does exist in certain dynamical systems [10]. The divergence also reveals the 
characteristic of the nonperiodic motion of a chaotic dynamical system. The non- 
periodic motion gives a chaotic system a broadband cheiracteristic in the frequency 
domain. All of these signatures can be used to characterize chaos. 

9.3.1 Divergence Characterized by Lyapunov Exponents 

A dynamical system can be defined by an iterative equation 

x{k + 1) = F(x(fc)), (9.62) 
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where A; = 1,2,..., n, or by a differential equation 

^ = F(xW), (9.63) 

where x(fc) and x(t) are sets of variables describing the system dynamics. Such 
variables represented by x{k) or x(t) span the phase space of the corresponding 
dynamical system. 

What we are concerned with here is the rate of divergence between two traces 
starting from two initial conditions that are close to each other. First, consider a 
system described by an iterative equation as given in (9.62). By defining the devia- 
tion, e, of a neighboring trace away from the original trace as e(A;) = x{k) - xo(fc), 
where xo indicates the original trace, we have 

xo(fc + 1) + e(A: + 1) = F(xo(A;) + e(A;)) 

= F(xo(fc)) + DF(xo(fc))-e(/c), (9.64) 

where the matrix DF is defined as 

DF(xo(fc)),, ^ ^^^^^- (9-65) 

Therefore, we obtain 
e(fc + l) = DF(xo(A;)).e(A;) (9.66) 

for the iterative equation given in (9.62). Equation (9.66) is called the stability equa- 
tion. It is important to emphasize that, in calculating the Lyapunov exponents for 
a system described by an iterative equation, this is the equation form that should 
be used. 

For a system described by a differential equation as given in (9.63), we can obtain 
the following stability equation through a similar procedure: 

^=DF(xo(<))-e(<). (9.67) 
at 

As can be seen here, the stability equation of the differential equation is different 
from that of the iterative equation. In order to numerically calculate Lyapunov ex- 
ponents of a differential equation, one has to convert this stability equation into the 
form of the stability equation of the iterative equation. This can be achieved by sam- 
pling the attractor every T, time interval at < = T,, 2Ta, • • •, nr^. In the following, we 
define e(ifc) = e(t = kTs) for convenience. The stability equation of the differential 
equation can then be converted by realizing that (9.67) can be expanded as 

e(fc + l)-e(fc) ^ ^ ^ DF(xo(A:)) • e(A:). (9.68) 
r, at 

Therefore, we can convert this stability equation into the following form: 

e(A;-I-1) = DF(xo(fc)) • e(/:)T^-t-e(fc) 

= (I-fDF(xo(fc))r,).e(A;) 

= G(xo(fc)) ■ e(fc), (9.69) 

where the matrix G(xo(A;)) = 1 + DF(xo(A;))r^ and I is a unity matrix. 
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Because most of the publications in the literature only discuss the calculation 
of the Lyapunov exponents from pure numerical data [16, 17, 18], not from a dif- 
ferential equation, a brief discussion on the calculation of the Lyapunov exponents 
from a differential equation is provided here. In general, the complex eigenvalues 
of the Jacobian matrix DF(xo(fc)) provides the information of the dynamical sta- 
bility of the system. The real part of each eigenvalue is a Lyapunov exponent that 
provides the information of divergence or convergence. The imaginary part provides 
the information of oscillation or cycling. In order to calculate the Lyapunov expo- 
nents of a dynamical system described by a differential equation, we do iteration 
on the matrix G(xo(A;)) instead of diagonalizing the Jacobian DF(xo(fc)). The Lya- 
punov exponents in the average sense, called the global Lyapunov exponents, can 
be obtained from the following procedure [16, 17]: 

e(A; + L) = G(xo{k + L - 1)) • G(xo(fc + L-2))---:- G(xo(fe))e(A;). 

= G^(xo(fc))-e(A;), (9.70) 

where 

G^(xo(A:)) = G(xo(A; + L-1))- G(xo(fc + L-2)) G(xo(A;)). (9.71) 

To calculate the real part of the complex eigenvalues of the Jacobian matrix, we 
actually calculate the eigenvalues of the following matrix: 

|e(fe + L)|^ = [G^(xo(fc))]tG^(xo(fe))|e(A:)|^ (9.72) 

where the symbol f denotes the complex-conjugate transpose matrix. We then assign 
[G^(x(A;))]^G^(x(/i;)) to a sequence of matrices: 

[G^(x(A;))]tG^(x(Jt)) = G^(x(ifc + L - 1)) ■ Gt(x(it -1- Z, - 2)) • • • 
Gt(x(A:)).G(x(fc))... 

■G(x(fc-fL-2))-G(x(fc + L-l)) (9.73) 
= A(2L) • A(2Z, - 1) • A(2L - 2) • • • 

•A(3)-A(2).A(1), (9.74) 

where 

G\x{k + L-1)) = Ai2L), (9.75) 
G^(x(fc + L-2)) = A(2L - 1), (9.76) 

G\x(k + L-3)) = A{2L-^2), (9.77) 

G(x(fc-|-2)) = A(3), (9.78) 
G(x(A;-M)) = A(2), (9.79) 

G(x(fc)) = A(l). (9.80)' 

In general, the multipUcation of these matrices is ill-conditioned. Therefore, the 
following QR decomposition shall be used: 

MmU -1) = QO')R(j), (9-81) 
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where Q(0) = I, an identity matrix. Following the tedious procedure of QR decom- 

position, we eventually obtain 

A(2L) ■ A(2L -!)••• A(2) ■ A(l) = Q(2L) ■ R(2L) • R(2L - 1) • • ■ R(l).    (9.82) 

Assume that 

Ml = Q(2L) • R(2L) • R(2L - 1) • ■ • R(l) 

= Qi(2L)-Ri(2L)-Ri(2L-l)---Ri(l), (9-83) 

M2 = Ql(2L)-Mi-Qi(2L), (9-84) 

= Ri(2L) • Ri(2L - 1) • • -RiCl) • Qi(2L). (9-85) 

By assigning Ri(i) = A^O') for j > 1 and Ri(l)Qi(2L) = A2(l) and by applying 
(9.81) and (9.82) in (9.85), we can rewrite M2 as 

M2 = A2(2L) • A2(2L - 1) • ■ • A2(2) • A2(l), 

= Q2(2L) ■ R2(2L) • R2(2L -!)••• R2(l). (9-86) 

By repeating this tedious procedure K times until QK(2L) approaches an identity 
matrix with a desired accuracy, we eventually obtain 

MK = QK(2L) • RK(2L) • RK(2L - 1) • • •RK(1). (9-87) 

Then we have the Lyapunov exponents in average^the global Lyapunov exponents. 
These global Lyapunov exponents are denoted as Xi and expressed as 

1    21. 

J=l 

where iRK{j))ii is the ith diagonal element_of the matrbc RKW- Since the QR 
decomposition guarantees the order of Ai > A2 > • • • > An, the largest global Lya- 
punov exponent is Ai. This procedure has been programmed to calculate the global 
Lyapunov exponents of a Lorentz system to check the accuracy. When a positive 
global Lyapunov exponent exists, the attractor is verified as a chaotic attractor. 
This procedure is also used to calculate the transverse Lyapunov exponents of syn- 
chronized systems, which are discussed in Subsection 9.4.1 

When the dimension of the required phase space is too large to be handled by 
this matrbc method in practice, another method can be used to calculate only the 
largest Lyapunov exponent. It is based on the concept that the largest Lyapunov 
exponent usually dominates the divergence [13, 19]. Therefore, the magnitude of the 
deviation e can be described as 

|e(fc + L)| « |e(A;)| exp(AiL). (9.89) 

Therefore, Ai can be calculated as 

Ai«.iln 
e(fc + L) 

e{k) 
(9.90) 

In general, e = x - xo in this method is calculated through the reconstruction 
of xo from the time series of a single dynamical variable of the system. For ex- 
ample, the dynamical variable Xi{t) as a function of time is chosen to construct 
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the vector XQ. This is achieved by assigning Xi{t) as yi{t), Xi{t + T^) as y2(t), 
Xi{t + 2TS) as 2/3(t), and so forth until the whole set of {j/i(t),i = 1, • •-.d} can 
represent the dynamics of the attractor. The vectors xo are then constructed as 
xo(i) = xo(ti) = {yi{ti),y2{ti), ■ ■ ■ ,Vd-i[U),yd{U)}. The phase space expanded by 
{yi{t), i = 1, • • •. d} is recognized as the embedding space of the attractor, and d is 
the dimension of the embedding space. Whether {2/i(t), i = 1, • • •, d) can represent 
the entire attractor or not depends on the proper choice of the time lag TS and 
the embedding dimension d. After the attractor is reconstructed in the embedding 
space, we can choose a point xo(i) as a center, and a set of points xoO) within a 
small shell centered at xo(i) as x. Thus, the deviation e = x - xo can be defined, 
and the magnitude of e is measured as the size of the shell. The set x is called the 
nearest neighboring points. Detailed discussions can be found in Refe. [13, 19]. 

The deviation e(fc) can also be generated by a perturbation along the transmit- 
ter trace in the numerical simulation program. By calculating the average of the 
convergence or divergence of the perturbation, the largest Lyapunov exponent can 
be obtained. This method is very similar to the one discussed above for the calcula- 
tion of the largest Lyapunov exponent. The difference is that this method generates 
the nearest neighboring points by the perturbation. 

9.3.2 Geometric 
Structure Measured by Dimension of Chaotic Attractor 

Another method to characterize a chaotic attractor is to characterize its geometric 
structure measured by dimensions. In general, a chaotic attractor is also a strange 
attractor, which means its geometric structmre is fractal. There are several methods 
to characterize the geometric structure of a chaotic attractor. Here we discuss only 
the correlation dimension, which has been found to be a good characterization of a 
chaotic dynamical state [20, 21]. This correlation dimension is denoted by Z?2. When 
Dz is high, the complexity of the chaotic state is high. 

To calculate D2, we first define the correlation integral C{N,r) of a dynamical 
state as [20] 

C{N,r) = -^f2^(^- 11^* - ^^ID' (^-^^^ 

where e{-) is the Heaviside step function, Xi and Xj are vectors constructed in an 
embedding space from the time series of a single or several dynamical variables of 
the system to represent the attractor, N is the total number of the vectors, and r 
is a prescribed small distance. 

The correlation dimension is obtained through the local slope of logC(JV,r) 
calculated by 

^ logTi-l -logTi+i 

The value of u{ri) at the position where uin) shows a plateau provides the value of 
the correlation dimension D2. This method has been proven to be efficient and has 
been implemented for different dynamical systems [13]. 
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9.3.3 Other Signatures 

Because most of the data collected for a dynamical system is contaminated by noise 
in a real world, it is usually difficult to verify from a single signature if the dynam- 
ics of a system is chaos or just a diffusion process. Several pieces of evidence have 
to be collected to make a correct judgment. Besides the Lyapunov exponents and 
the correlation dimension, a chaotic state can also be verified through the route 
to chaos. The common routes to chaos are the period-doubling route to chaos, the 
quasiperiodicity route to chaos, and the intermittency route to chaos. In addition, 
we can also check the firequency spectrum of a chaotic attractor to obtain another 
piece of evidence for confirming a chaotic state. Using all these signatures to verify 
a chaotic state is demonstrated in the following example. 

9.3.4 Example: Chaos in an Optically Injected Semiconductor Laser 

-2 0 2 
Detuning Frequency (GHz) 

Fig. 9.4. Largest global Lyapunov exponent of the dynamical states as a function 
of detuning fi-equency ranging fi-om / = -4 GHz to / = 4 GHz with the injection 
factor being | = 0.03. The grey plot is the corresponding bifurcation diagram shown 
in Fig. 9.1(a). 

Here we use the chaotic state of the optical injection system operated at ^ = 0.03 
and / = 0 GHz to demonstrate the use of the signatures. The route to this chaotic 
state by varying the detuning frequency is shown in the bifurcation diagram in 
Fig. 9.1, which is reproduced in the grey plot in Fig. 9.4. This plot shows that the 
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system dynamics evolves from a fixed point at / = —4 GHz through period-one 
states, period-two states, period-four states, as the detuning frequency / is varied, 
and finally to the chaotic state at / = 0 GHz. 

Based on the procedure discussed in Subsection 9.3.1, the largest global Lya- 
punov exponent, Ai, is obtained and shown by the solid Une in Fig. 9.4. Ideally, 
fixed points should have global Lyapunov exponents being all negative, periodic 
states should have Ai being zero, and chaotic states should have at least one positive 
Lyapunov exponent. However, it is usually very difficult to calculate the Lyapunov 
exponents into the desired accuracy, say exact that Ai == 0 for periodic states. Be- 
sides, Lyapunov exponents axe not dimensionless, but are inversely proportional to 
the time scale. The numerical value of a Lyapunov exponent changes with time unit 
though the characteristic time of the dynamics is usually a good choice. Thus, it 
is usually not conclusive to announce a state being chaos based solely on the ex- 
istence of a positive largest Lyapunov exponent, especially when the time scale is 
axound the chetreicteristic time of the dynamics, and the numerical value is closed 
to zero but is positive. As is shown in Fig. 9.4, the fixed points have negative Ai 
when they are not next to the periodic states. The periodic states judged from the 
bifurcation diagram have Ai not exact zero but around zero, which depend on the 
time unit. This judgment can be further confirmed by the fact that Ai is nearly a 
constant for all the periodic states based on the bifurcation diagram. Therefore, by 
combining the bifurcation diagram and the Lyapunov exponents, we can say that 
the dynamical states with Ai significantly larger than the constant part of the solid 
curve shown in Fig. 9.4 are chaotic, including the state with ^ = 0.03 and / = 0 
GHz. The chaotic characteristic of this state can also be further examined by its 
optical spectrum shown in Fig. 9.2(c), which shows the broadband characteristic of 
chaos. This provides an additional piece of evidence to verify this chaotic state. 

We can also examine the geometric structure of this chaotic state by calculating 
its correlation dimension D2. As is mentioned in Sec. 9.3.2, the correlation dimen- 
sion is determined by the plateau of v{ri). The v{ri) curves mairked with different 
embedding dimensions, d, are shown in Fig. 9.5(a). When d is smaller than D2, the 
plateau parts of the curves saturate to d, as is seen in the curves with d — \ and 
d = 2 in Fig. 9.5(a). When d is larger than D2, the plateau parts of the curves 
approximately stay as a constant and do not increase with d, as is seen in the curves 
with d > 3 in Fig. 9.5(a). Therefore, the correlation dimension of the chaotic attrac- 
tor can be obtained from the common flat part of all the slope curves with d > 3 in 
Fig. 9.5(a). From Fig. 9.5(a), the correlation dimension of the dynamical state for 
Rap = 0 in the absent of noise is measured to be around D2 ^ 2.4. 

The plateau is a very important characteristic for the determination of the cor- 
relation dimension from these curves. Because the structure of a chaotic attractor 
is generally fractal, the structure should remain unchanged when one zooms in or 
zooms out. This is the reason to have the flat part, where the slope of the cor- 
relation integral is independent of the correlation scale. However, when the scale 
being considered is so small that it reaches the small-scale uniformity Umited by 
the device accuracy, the fractal structure disappears. The local slope of each curve 
then increases due to the contribution of all the noise, which includes the laser noise 
and the data truncation noise. On the other ends of all the curves, where the scale 
being considered is so large that the measured range for calculating the correlation 
dimension does not only cover the local structure but also covers remote structures, 
the local slope becomes irregular. It can then either increase or decrease, depending 
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(l+a) sin (p 

Fig. 9.5. Correlation dimension as a function of embedding dimension for the 
chaotic attractor at f = 0.03 and / = 0 GHz with different levels of noise: (a) 
uin) curves with R,p = 0, (b) u{n) curves with Rsp = 4.7 x lO^^ V m   s    , (c) 
uin) curves with E.p = 2 x 4.7 x lO^^ V^m-^s'S (d), (e), and (f) are the portions of 
the corresponding attractors, respectively. Each u{ri) curve is marked by the value 
of its embedding dimension. 
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on the specific global property of the attractor. Further increasing the scale will 
make the chaotic attractor indistinguishable from a single point. At this large scale, 
we obtain the data showing that the dimension of the chaotic attractor is zero for a 
single point. All these characteristics can be observed in Fig. 9.5(a). Therefore, the 
correlation dimension is obtained only from the flat parts of all curves. 

When there is noise in the system, the attractor is contaminated by the 
noise. The i/(ri) curves contaminated by the laser noise measiured by Rap = 
4.7 X 10^^ V^m-^s-^ and ilsp = 2 x 4.7 x 10^® V^m-^s"^ are shown in Figs. 9.5(b) 
and (c), respectively. As is seen, the noise increases the plateau level of each fin) 
curves with rf > 3 because the dimension of the noise is infinity. Therefore, the com- 
mon plateau of the uin) curves with d > 3 disappears, and it becomes difficult to 
evaluate D2. The local enlargement of the attractors for R^p = 4.7 x 10^^ V^m~^s~^ 
and Rsp = 2x 4.7 x 10^^ V^m"^s~^ are shown in Figs. 9.5(e) and (f), and that of the 
attractor for R^p = 0 is shown in Fig. 9.5(d) for comparison. The whole attractors 
with Rsp = 0 and Rsp = 4.7 x 10^^ V^m-^s"^ are shown in Fig. 9.2(b) and (e), 
respectively. The effect of the noise with different strength can be observed from the 
fluctuating traces of the attractor shown in Figs. 9.5(e) and (f). 

When a dynamical system is contaminated by noise, the verification of its dy- 
namical state becomes more complicated and more difficult. The concept of using 
several pieces of evidence to verify a chaotic state becomes even more important. 
The route to chaos provides the unique characteristic of a chaotic system. The 
bifurcation diagram provides the characteristic of the waveform. The Lyapunov ex- 
ponents provide the aspect of the sensitivity to the initial condition. The optical 
spectrum provides the characteristic of the broadband. The correlation dimension 
D2 provides the characteristic of the geometric structure. All of these signatures are 
demonstrated in this example. 

9.4 Robustness of Chaos Synchronization 

The approach to synchronizing chaos considered here is based on the concept 
described by L. Kocarev and U. Parlitz [24]. For two chaotic systems physically con- 
nected by a signal s(t), each system can be rewritten mathematically as if the system 
is driven by a common driving signal, D(s(t)), and can be expressed as the following: 

^=F(x,D(s(t))), (9.93) 

g=G(y,D(s(t))), (9.94) 

where D(s(<)) is a function of the signal s(i). With the vector function G being 
equal to the vector function F, these two chaotic systems can be synchronized to 
each other if the difference e = x - y possesses a fixed point with zero value. This 
fixed point exists when the average local Lyapunov exponents of the difference e 
are all negative. These average local Lyapunov exponents are also called the average 
local transverse Lyapunov exponents of the synchronized attractors. 
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9.4.1 Transverse 
Lyapunov Exponents in the Case of Perfect Parameter Match 

Now, we examine the robustness of chaos synchronization by considering the 
transverse Lyapunov exponents. For illustration purpose, only the additive driving 
signal is considered here. In this subsection, only chaos synchronization with per- 
fectly matched parameters is considered, for which G = F. This is an ideal situation 
that serves the purpose of examining the existence of chaos synchronization. 

For synchronization achieved by coupling through an additive driving signal, the 
general equations (9.93) and (9.94) of the synchronization theory can be rewritten as 

^=F(x) + aD(x), (9.95) 
at 

§=G(y)+aD(x), (9.96) 
at 

where aD(x) has replaced the driving signal s(f) because this special type of driv- 
ing force is more suitable when the chaos synchronization system is designed for the 
communication purpose, and the coupUng strength a has been separated from s(i). 
By defining f (x) = F(x) -I- aD(x) and g(y) = G(y) -I- aD(y), we obtain 

^ = F(x)-FaD(x) = f(x), (9.97) 
at 

^ = G(y)-»-aD(x) 

= G(y) 4-aD(y)-I-aD(x) - QD(y) 

= g(y) + aD(x) - QD(y) . (9.98) 

When 9,11 the parameters are matched, G = F and g = f. 
The equations given in (9.97) and (9.98) are the general equations for most of the 

proposed setups utilizing an additive driving signal to achieve chaos synchronization 
for the communication purpose. The first equation describes the chaotic dynamics of 
the transmitter. The second equation describes the synchronization dynamics of the 
receiver. Now the separation between the traces x(t) and y(t) is defined as e = y-x. 
Then the equation describing the synchronization dynamics can be written as the 
following: 

^ = f (x + e) - f (x) - a[D(x + e) - D(x)] 

af, ,     an (9.99) 

By defining /x as the eigenvalues of the Jacobian [^(x) - a^], we obtain the 
transverse Lyapunov exponents, denoted as AT, as the real part of /j,: 

AT = Re(p). (9.100) 

The transverse Lyapunov exponents can be obtained through the method discussed 
in Sec. 9.3. The transverse Lyapunov exponents so obtained are called the aver- 
age transverse Lyapunov exponents. One can also use the perturbation method to 
calculate the largest average Lyapunov exponents. 
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9.4.2 Transverse 
Lyapunov Exponents in the Presence of Parameter Mismatch 

In practice with real physical systems, it is not possible to achieve chaos syn- 
chronization without any parameter mismatch. Therefore, it is important to discuss 
the method of calculating the transverse Lyapunov exponents when the system pa- 
rameters are mismatched. Instead of using (9.97) and (9.98), we use another set of 
equations, in which g / f, to describe the synchronization when the parameters of 
the transmitter and the receiver are not perfectly matched: 

^ = f (x), (9.101) 

^ = g(y) -f aD(x) - aD(y). (9.102) 

In this case, because the function describing the dynamics of the transmitter is not 
the same as that describing the dynamics of the receiver, the stability of synchro- 
nization is no longer described by the deviation between the transmitter trace and 
the receiver trace in the coupled phase space. A new concept has to be invented. 

We propose the following concept to deal with this situation: Instead of con- 
sidering the stability of synchronization as the deviation between the transmitter 
dynamics and the receiver dynamics, we consider the synchronization stability as the 
deviation between the receiver trace and its nearby traces, using the receiver trace 
attracted by the transmitter trace in their phase space of the synchronized dynamics 
as the reference. Therefore, the deviation vector, e(t), is defined in another manner as 

e(t)=y(t)-yo(t), (9-103) 

where yo{t) is the original trace of the receiver synchronized to the transmitter, 
and y(t) is the perturbed trace of the receiver. Therefore, the proposed concept can 
be quantified to describe the synchronization stability in the presence of parameter 
mismatch: 

de 
It 

If the function g(y) is replaced by the function f (y), this equation is identical to 
(9.99). 

We can use the same procedure described in Subsection 9.3.1 to implement this 
concept to find the transverse Lyapunov exponents. Alternatively, we can generate 
a small perturbation in the numerical program on the receiver trace and then calcu- 
late the time evolution of the perturbation. However, we can only obtain the largest 
transverse Lyapunov exponent from the later method, which is actually adequate 
for the stability analysis. 

The concept proposed here for analyzing the synchronization stability when the 
system parameters are mismatched can be considered as a special case of the gen- 
eraUzed chaos synchronization proposed by L. Kocarev and U. Parlitz. [25]. 

9.4.3 Evaluation of Synchronization Quality 

The simplest and most intuitive method to quantitatively measure synchronization 
quality is to calculate the difference between the traces of the transmitter output 

dg,  \       5D,    . 
a^(yo)-a^(yo) ■ e. (9.104) 
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and the receiver output as e{t) = y{t) - x(f). For the practical purpose of chaotic 
communications, this synchronization error is normalized to the size of its chaotic at- 
tractor. Although there has not been a standard definition of synchronization error, 
a common one is defined as the following: 

{\Xit)-Y{t)\) (9 105) 
^"     {\x{t)\)    • 

When the synchronization error C is small, the synchronization quality is high. Due 
to its simplicity, this direct measurement of synchronization quality is widely used 
in the numerical simulation of chaos synchronization systems. 

In an experiment, however, the non-simultaneous digitization of experimental 
data does not allow such direct and precise comparison of the transmitter and re- 
ceiver outputs to provide a convincing result. A measurement method that is not 
very sensitive to the digitization error is then more desirable. A common concept 
known as correlation coefficient is thus usually used for estimating the synchroniza- 
tion quality of real systems. The correlation coefficient is defined as the following [15]: 

^ {[X{t)-{Xm[Y{t)-{Ym) (9106) 

where X{t) and Y{t) are the outputs of the transmitter and the receiver, respec- 
tively, and {• > denotes the time average. The correlation coefficient is bounded as 
-1 < P < 1- A larger value for \p\ means a better synchronization quality. Instead 
of quantifying the synchronization quality using the synchronization error, this cor- 
relation coefficient measures the similarity of the two attractors. 

9.4.4 Example: 
Synchronization of Optically Injected Semiconductor Lasers 

We now use a single-mode semiconductor laser subject to optical injection as an 
example to demonstrate the analysis of the robustness and the quality of the chaos 
synchronization. Detailed discussions of the chaos synchronization of this system 
can be found in Subsection 7.4.1 of Chapter 7, and the configuration can be found 
in Fig. 7.15. Here we concentrate on the mathematical analysis of the robustness 
and quality of synchronization. 

The dynamics of a semiconductor laser subject to the injection of an optical field 
is mathematically modeled by the following coupled equations [11]: 

^ = _^A -f Hu^J - .DA' + §(1 - ib^yA-^ 
+r,Aiexp{-int), (9.107) 

dt        ed hu>o 

as is expressed in (9.46) and (9.47). The superscript T labels the variables of the 
transmitter. The receiver, driven by the transmitted signal aA''{t)+Ai exp(—jnt-|-0) 
with Aiexp{-iQ.t-\-6) being the optical injection signal, is modeled by the following 
equations: 
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Fig. 9.6. Largest global transverse Lyapunov exponent of chaos synchronization as 
a function of the couphng strength. The chaotic state is generated at ^ = 0.03 and 
/ = 0GHz[23]. 

dt 2 ^ 

dt ed      '° fiwj 
y^\A R|2 

(9.109) 

(9.110) 

where the superscripts R labels the variables of the receiver, Wc is the longitudinal 
mode frequency of the cold laser cavity, AiVc = wj-wf is the difference between the 
cold-cavity frequencies of the transmitter and the receiver, a is the coupling strength 
of the transmitter output to the receiver, and 6 is the relative optical phase differ- 
ence [23]. The definitions of all other parameters can be found in Subsection 7.7.4. 
Based on the synchronization concept proposed by L. Kocarev and U. Parlitz [24], 
the existence of the perfect synchronization solution, A^ = A'^, requires 6 = 0, 
Au)c = 0, and that the two lasers be identical except that 7?^ = 7J + 2rja [23]. 

The largest global transverse Lyapunov exponent. AT, of the coupled system 
with different coupling strength, a, is shown in Fig. 9.6. The value for each a is 
calculated by assigning the matrix DF in (9.67) as 

DF = 
5f , ,       dD (9.111) 

and following the procedure described in Section 9.3.1. It is important to know that 
AT being negative does not guarantee that the local transverse Lyapunov exponent 
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Fig. 9.7. Largest global transverse Lyapunov exponent of chaos synchronization as 
a function of the phase mismatch. The chaotic state is generated at ^ = 0.03 and 
/ = 0 GHz. 

at each segment of the synchronized trace is negative. Therefore, the Lyapunov ex- 
ponent begins to be negative around a = 0.06, but robust synchronization will not 
occur until a is larger than 0.15 [23]. We can see that an increase in the coupUng 
strength does not necessarily result in an increase in the robustness of synchroniza- 
tion. This phenomenon has been observed in other systems [26]. The most robust 
synchronization occurs when the value of the coupling strength index is around 
a = 0.4. This coupUng strength is used when we calculate AT for the system oper- 
ated under the condition of the phase mismatch. 

The effect of the mismatch in many parameters on the robustness and quality 
of synchronization has been studied for this system [23]. Here we consider only the 
phase mismatch 9 for the demonstration of the numerical methods discussed above. 
The dependence of AT on the phase mismatch 6 is shown in Fig. 9.7. The value of 
AT is calculated in this situation by assigning the matrix DF in (9.67) as 

DF = (9.112) 

and then following the procedure described in Section 9.3.1. As is shown, the tol- 
erance of the chaos synchronization to the phase mismatch is in a range of above 
7r/2 around 6 = 0. It is important to check if this characteristic is consistent with 
the quality of the synchronization. The quality measured by C and p is shown in 
Figs. 9.8(a) and (b), respectively. As is shown, this tolerance can also be observed 
by examining the quality of the synchronization. A comparison between the curves 
of AT, Ci and p demonstrates the consistency of these measures. 
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Fig. 9.8. Quality of chaos synchronization as a function of the phase mismatch 0 
measured by (a) the synchronization error TJ and (b) the correlation coefficient p. 
The chaotic state is generated at f = 0.03 and / = 0 GHz. 

9.5 Chaotic Communications 

The standard performance measure of a communication system is the BER for 
the decoded message as a function of the channel SNR in the transmission channel. 
The channel SNR is defined as 

SNR=^, (9.113) 

where Pm is the power of the transmitted message, and ax is the variance of the 
channel noise, X{t). The channel SNR is a function of the channel noise, which is 
taken to be additive white Gaussian noise, and the bit energy of the transmitted 
message, which depends on the modulation index of the message. 

The BER of the decoded message is a function of the channel noise and the 
intrinsic noise of the devices in the system, both of which cause synchronization 
error between the receiver and the transmitter. In a chaotic communication system 
utilizing chaos synchronization, the synchronization error is caused mainly by the 
noise, including the channel noise and the transmitter and receiver noise, the mes- 
sage encoding process, and the parameter mismatch between the transmitter and 
the receiver. The synchronization error is contributed by the following two forms of 
error: synchronization deviation, associated with the accuracy of synchronization, 
and desynchronization bursts, associated with the robustness of synchronization. 
Synchronization deviation is simply the synchronization error when the system is 
synchronized, but not perfectly and precisely. Desynchronization bursts are charac- 
terized by sudden desynchronization between the transmitter and the receiver. A 
desynchronization burst can cause a large, abrupt difference between the waveforms 
of the transmitter and the receiver. Because a system takes some finite time to resyn- 
chronize after a desynchronization burst, the bits that follow a desynchronization 
burst within the resynchronization time are destroyed. 
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9.5.1 Numerical Algorithm for Treating Channel Noise 

In the example of simulating the laser dynamics, only the intrinsic noise of the semi- 
conductor laser system is considered. To extend the numerical analysis to the system 
performance, the numerical method for treating white Gaussian channel noise is nec- 
essary and nontrivial. In order to integrate the channel noise into the dynamics of the 
receiver, the randomness of the channel noise has to be considered. As is discussed in 
the simulation of a stochastic differential equation, it is not correct to calculate the 
channel signal first and then apply the channel signal as a deterministic function of 
time to the differential equation that describes the dynamics of the receiver. Besides, 
the channel signal has to be evaluated before it is injected into the receiver in order to 
include the linear eflFect of the channel noise. This requires that the effect of the chan- 
nel noise on system performance be the same as that in a traditional communication 
system when the nonUnear effect of the channel noise is not considered. The consis- 
tency between the linear and the nonUnear effects of channel noise must be satisfied. 

The numerical method discussed here is based on the assumption that the chan- 
nel signal is directly coupled into the receiver at a constant coupUng rate. Based 
on this assumption, the equation of the receiver can be obtained by adding white 
Gaussian channel noise in (9.102) as the following: 

% = S(y) + OiD{x) - aD{y) + N{X{t),y;rj), (9.114) 
at 

where N{-) is a general function regarding the effect of channel noise on the receiver, 
n is the coupling rate, and X(t) = {Xi{t), ■ ■ ■ ,Xk{t)) is a generalized fc-dimensional 
white Gaussian channel noise. Each component of X{t) can be expressed as 

Xi{t) = yf n,(i), (9.115) 

where Ni/2 is the power spectral density of Xi{t), and mit) is a normahzed white 
Gaussian variable with a zero mean, which satisfies (9.2) and (9.3). The variance of 
Xi{t) is indicated by o"?. Because all oiXi{t) are independent of each other, the vari- 
ance (7%: of the entire channel noise X{t) with {a?, i = 1, • • •, fc} has the following 
relationship: 

k 

a%=Y.ah (9.116) 
=1 

and the power spectral density Nx/'2 of X{t) with {Ni/2, i = 1, •••,A;} has the 
following relationship: 

N^^Y^^_ (9.117) 
i=l 

Because the dynamics of the transmitter is not affected by channel noise, it is not 
important in this discussion. Therefore, we only focus on the dynamics of the receiver 
when the white Gaussian channel noise is considered. 

In order to simphfy the simulation of stochastic differential equations as is 
discussed in Subsection 9.2.3, it is preferred that N{X{t),y\r]) is not a func- 
tion of y. Thus, the dynamical variables of the receiver should be chosen so that 
N{X{t),y;r]) = Cr}X{t), where C is a constant generated from the choice of y. 
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When this objective is accomplished, each dynamical variable of the receiver is gov- 
erned by the equation expressed as: 

dyi ^=gi{y) + aDi{x)-aDi{y)+Cvf-fm{t). (9.118) 

Therefore, the dynamics of the receiver affected by the white Gaussian channel noise 
can be simulated by following the discussion in Section 9.2 once the value of Ni/2 is 
known. This equation calculates the nonlinear effect of channel noise on the quality 
of synchronization and thus message decoding. 

However, the channel noise has to be evaluated before it is injected into the 
receiver because its linear effect has to match that in the traditional communication 
systems. To generate X{t), its components Xi{t) are paired and generated through 
the Box-MuUer method [27] as 

X2J-1 = i/^^2^i~7ina^-cos(27rbj), (9.119) 

X2j = yJ-2(T^jlnaj ■ sin{2irbj), (9.120) 

where j = 1, • • •, [fc/2]int with [-Jint defined as the nearest integer smaller than the 
value in the bracket, and the pair of a, and bj are independent random variables 
evenly distributed in the interval (0,1]. The Uj and bj variables for a given j value 
are independent of each other, and each pair is also independent of other pairs of 
different j values. If the dimension k of X{t) is an odd number, the last unpaired 
Xk{t) can be generated by (9.119) with 2j - 1 = k. This evaluation calculates the 
linear effect of channel noise on message decoding. 

It is important to assure that the nonUnear effect of the channel noise is con- 
sistent to' the linear effect. Because the nonlinear effect of the channel noise on the 
dynamics of the receiver is simulated by knowing the value of Ni/2 and the hnear 
effect of the channel noise is evaluated by knowing the value of cr?, a connection 
between Ni/2 and cr? has to be estabhshed. The consistent connection is built based 
on the twofold effect of this channel noise on the system performance in commu- 
nication: When the nonhnear effect of the channel noise on the dynamics of the 
receiver is considered, the receiver will provide nature filtering on the bandwidth of 
the channel noise. In this situation, the bandwidth of the channel noise does not 
have to be pre-defined. When the effect of the channel noise on the dynamics of the 
receiver is not considered, the effective bandwidth of the channel noise is defined 
by the bandwidth of the encoding signal. This assumption is the same as the one 
widely used in a traditional communication system. 

Based on this fact, the relationship between a? and Ni/2 can be established as 
the following: 

af = ^i2W) 

—  "2"(/m) 

where W is the resolving power and is equal to the half bit rate, and the bit rate /m 
is equal to 1/Tb with Tb being the bit duration. Thus, the SNR defined in (9.113) 
can be expressed as 
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SNR=^ 
a 

(9.122) 
Er=iJVi/2' 

where Eh is the energy per bit. Therefore, once we choose the values of Eh, TL (or 
/ro), and SNR, the channel noise as a time series can be evaluated by knowing the 
variance {a?, i = 1, ■ • •, Jt}, and the effect of the channel noise on the dynamics of 
the receiver can be simulated by knowing the values of {Ni, i = 1, • • •, /:} and 77. 

9.5.2 Example: Chaotic Optical 
Communication using Optically Injected Semiconductor Lasers 

Here we use the opticaf injection system as an example to show the BER as a func- 
tion of SNR obtained by this method [14]. The rate equation describing the dynamics 
of the transmitter is given by (9.107) and (9.108), which is not our main interest in 
this subsection. The rate equation of the receiver after receiving the channel signal 
including the white Gaussian channel noise is described as the following: 

-—-=—l-A'^ + tioJo -iOc)A   +-{l-ih)^A   -fi-sp 

+[1 + m{t)]Ai exp{-iQt) + vaA'^{t) - rjaA^it) + vX{t)     (9.123) 

f^^^! := 4 _ ^^jva _ ^^lA^l^ (9.124) 
dt ed /two 

where m(t) is the message and X{t) is the optical white Gaussian channel noise. 
In this system, X{t) is a complex noise term that can be considered as a two- 
dimensional white Gaussian variables X{t) = {Xr{t),Xi{t)) = (Xi{t),X2it)), where 
Xr{t) is the real part and Xi{t) is the imaginary part of X{t). The encoding mes- 
sage m{t) used in the simulation has non-return-to-zero (NRZ) random digital bits 
"1" and "0", with the amplitude of "1" indicated by m{t) = e and that of "0" as 
m{t) = 0. The strength of the message can be varied by adjusting the parameter e. 
The condition of perfect parameter matching is assumed. 

As is discussed in Subsection 9.2.4, A^ is a complex field, which is a two- 
dimensional variable. In order to assure that the channel noise term N{X{t),y;T]) 
in (9.114) is decomposed into the form in (9.118), the complex field A"^ is decom- 
posed into its real and imaginary parts as A'^ = \Ao\{a'^+ ia"^}. Together with n^ 
defined by A'''^ = A'^o(l -l- n^), the coupled equations (9.123) and (9.124) are recast 
into the following form: 

^ = 1 / l£2n n^ - 7P ka"")' + (a"^)^ - l] 1 {a"" + ba'"") 
dt 2 1^ 7^ J L J J 

-f [1 -I- m{t)]£,^c cos(27r/t) -I-1^ 

+ ar^a'^-am"' + n^, (9.125) 



da ;/R 
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1 f 7c7n - [/   /R\2   ,   /   //R\2      ill/    i,„'R   ,   „"R> =-.^-i-4-n-7p[(o   )  +(o    )   -Ij K-ba    +o    ) 

- [1 + m(i)]e7c sin(27r/f) + |-^ 

//T "R   ,      ^^(t) 
+ arja     - arja     +V-Tj-r' 
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(9.126) 

-—- =-7sn   -7nn   [^(o   )   + (a    )J-7s/[^(a   )   + (a    )   - IJ 

;^ J[(a'^)^ + (a"^)^ - l] [(0'^)== + (a"^)']. (9.127) 7s 7P 

7c 

As the result, the channel noise in (9.125) and (9.126) above have the same form as 
that in (9.118). 
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Fig. 9.9. Comparison between the BER as a function of for BPSK and that for the 
optical injection semiconductor laser system when the channel noise is not injected 
into the receiver. The solid curve indicates the BER of BPSK, and the dashed curve 
marked with soUd circles indicates the BER of the optical injection system when 
the nonlinear effect of the channel noise on the receiver is turned off numerically. 
The transmitter is operated at ^ = 0.03 and / = 0 GHz to generate the chaotic 
waveform as the message carrier. Perfect chaos synchronization is assumed. 

Because Xi{t) and X2{t) have the same magnitude, cr^ 
Nx = 2iVi = 27V2. Thus, the SNR can be expressed as 

2a! 

SNR: 
Eb/n _ Eb 

2al        Ni 

Eb/Tb ^ Eb 
2<7l        Ni' 

= 2(72 and 

(9.128) 
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Once the values of e, Tb (or /m), and SNR are determined, the values of Eh, ^i, 
al, Ni, and N2 can be obtained through (9.128). Therefore, the dynamics of the 
receiver can be numerically simulated through (9.125), (9.126), and (9.127) with the 
white Gaussian channel noise evaluated through (9.119) and (9.120). 

To examine this method by using this example, it is important to know that the 
nonlinear effect of channel noise does not contribute to the BER of this laser system 
when the term r?X(t) in (9.126) is set to zero. This assumes that the channel noise 
does not inject into the receiver laser; thus the quality of synchronization is not 
affected bjf the channel noise. Therefore, when r)X{t) = 0, the performance of this 
system caii be directly compared to that of a traditional communication system. As 
an examination of this method, the BER of this laser system with riX{t) = 0 is com- 
pared to that of a traditional binary phase shift keying (BPSK) system. In Fig 9.9, 
the BER as a function of the SNR for BPSK is shown as the solid curve, and that for 
the optical injection system with T)X{t) = 0 is shown as the dashed curve marked by 
solid circles. The solid circles show the value of BER obtained through the numerical 
simulation using (9.125), (9.126), and (9.127), and the dashed curve just provides 
the visual aid. Because the encoding message used in BPSK has NRZ random digital 
binary bits "0" and "1" with m{t) = -e/2 as the bit "0" and m(t) = e/2 as the bit 
"1" [15], the Eb of BPSK is only half of that of the encoding method used in this 
optical injection system. Therefore, a 3-dB difference in the SNR for the same BER 
should be expected. This 3-dB difference is marked in Fig. 9.9. 
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Fig. 9.10. BER as a function of SNR(dB) for the optical injection semiconductor 
laser system when the system performs chaos synchronization. The dashed curve 
marked with solid circles is obtained when £ = 0.1, and the dashed curve marked 
with solid squares is obtained when e = 1.0. The transmitter is operated at f = 0.03 
and / = 0 GHz to generate the chaotic waveform as the message carrier [14]. 
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The BER as a function of the SNR from the numerical simulation of (9.125), 
(9.126), and (9.127) with nonzero TjX{t) is shown in Fig. 9.10 [14]. The transmitter is 
operated at ^ = 0.03 and / = 0 GHz to generate the chaotic waveform as the message 
carrier. The intrinsic laser noise of the transmitter and that of the receiver axe both 
ignored in this simulation to clearly see the effect of the channel noise. Each curve is 
obtained by fixing the message amplitude while changing the strength of the channel 
noise. The dashed curve marked with soUd circles is obtained when e = 0.1, and the 
dashed curve marked with soUd squares is obtained when e = 1.0. As is shown, the 
performance analysis of the system with the same SNR but different e, or equiva- 
lently different Eh, results in different values of the BER. Because the channel noise 
increases with Eh for a given SNR, this dependence of the BER on Eh at a fixed SNR 
demonstrates the nonlinear effect of the channel noise on the system performance. 

9.6 Conclusions 

This chapter provides a detailed discussion of the most important numerical tools 
needed in the analysis of chaotic systems performing chaos synchronization and 
chaotic communications. Basic concepts, theoretical framework, and computer al- 
gorithms are reviewed. The subjects covered include the concepts and numerical 
simulations of stochastic nonlinear systems, the complexity of a chaotic attractor 
measured by Lyapunov exponents and correlation dimension, the robustness of syn- 
chronization measured by the trauisverse Lyapunov exponents in parameter-matched 
systems and parameter-mismatched systems, the quality of synchronization mea- 
sured by the correlation coefficient and the synchronization error, and the treatment 
of channel noise for quantifying the performance of a chaotic communication sys- 
tem. Optically injected single-mode semiconductor lasers are used as examples to 
demonstrate the use of these numerical tools. 

The discussion on a dynamical system described by a stochastic differential equa- 
tion shows that the integral of a stochastic term in the equation is very different from 
that of a deterministic term. When the first order of the integral is considered, the 
integral of a stochastic term is proportional to the square root of the infinitesimal 
time interval. In comparison, that of the deterministic term is proportional to the 
infinitesimal time interval. There are two types of integrals for solving a stochastic 
differential equation, namely the Ito integral and the Stratonovich integral. Which 
method has to be used depends on the characteristics of the noise. It is revealed that 
the calculation in the Stratonovich sense follows the rules of the Riemann-Stieltjes 
integral, but the white noise term in the equation is no longer white noise. The cal- 
culation in terms of the Ito sense assures that the white noise treated in the integral 
is still white noise, but the calculation does not follow the rules of the Riemann- 
Stieltjes integral. A connection between these two methods is given in this chapter. 

Two quantitative measures, namely the Lyapunov exponents and the correlation 
dimension, for a chaotic attractor are discussed. The Lyapunov exponents measure 
the sensitivity of a chaotic system to initial conditions and perturbations. The cor- 
relation dimension increases with the complexity of a chaotic attractor. Numerical 
methods for calculating these parameters are outhned. When the dimension of a 
chaotic attractor is very high, the calculation of the largest Lyapunov exponent is 
preferred because it greatly simplifies the numerical computation. 
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The robustness of synchronization is measured by the transverse Lyapunov ex- 
ponents. Either the whole set of transverse Lyapunov exponents or the largest trans- 
verse Lyapunov exponent can be used to measure the robustness. Usually only the 
largest transverse Lyapunov exponent is important. Thus, the calculation of the 
largest transverse Lyapunov exponent is preferred when the system is very complex. 
Because perfect parameter matching between a transmitter and a receiver is gener- 
ally not possible in a real system, a new concept of synchronization robustness is in- 
troduced for a system with parameter mismatch. For a perfectly parameter-matched 
synchronization system, the robustness of synchronization is measured between the 
attractors of the transmitter and the receiver. However, when the parameters of the 
system is not perfectly matched, this comparison between the transmitter and the 
receiver is impossible. Therefore, the comparison is made between the unperturbed 
and perturbed receiver attractors when synchronization is achieved. For the exami- 
nation of synchronization quality, the correlation coefficient and the synchronization 
error obtained by the direct comparison between the transmitter and the receiver 
waveforms are used. Because it is very difficult to obtain both chaotic waveforms 
with exactly simultaneous digitization when they are measured in experiment, a di- 
rect comparison between the transmitter and the receiver waveforms is usually not 
accurate. Therefore, the measurement using the correlation coefficient is preferred 
for the experimental data because it is less sensitive to digitization timing errors. 

The performance of a communication system is commonly measured by the 
BER as a function of SNR. In addition to the noise in the transmitter and the 
receiver, the noise of the communication channel has to be considered in eval- 
uating the BER and SNR of the system. The white channel noise in a syn- 
chronized chaotic communication system interacts nonlinearly with the nonlin- 
ear system. For example, the channel noise can cause the receiver to lose syn- 
chronization with the transmitter, thus resulting in a large bit error. Therefore, 
both the Unear effect of the channel noise as its role in conventional communi- 
cation systems and the nonUnear effects of the channel noise have to be con- 
sidered in a chaotic communication system. Approach to integrating the linear 
and nonlinear effects of the channel noise into the system consistently is ad- 
dressed. 
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Summary. The objective of this chapter is to provide a complete picture of the 
nonlineax dynamics and chaos synchronization of single-mode semiconductor lasers 
for chaotic optical communications. Basic concepts and theoretical framework are 
reviewed. Experimental results are presented to demonstrate the fundamental con- 
cepts. Nunierical computations are employed for mapping the dynamical states and 
for illustrating certain detailed characteristics of the chaotic states. Three differ- 
ent semiconductor laser systems, namely the optical injection system, the optical 
feedback system, and the optoelectronic feedback system, that are of most inter- 
est for high-bit-rate chaotic optical communications are considered. The optical 
injection system is a nonautonomous system that follows a period-doubling route to 
chacs. The optical feedback system is a phase-sensitive delayed-feedback autonomous 
system for which all three known routes, namely period-doubling, quasiperiodic- 
ity, and intermittency, to chaos can be found. The optical feedback system is a 
phase-insensitive delayed-feedback autonomous system that follows a quasiperiod- 
icity route to chaotic pulsing. Identical synchronization in unidirectionally coupled 
configurations is the focus of discussions for chaotic communications. For optical 
injection and optical feedback systems, the frequency, phase, and amplitude of the 
optical fields of both transmitter and receiver lasers are all locked in synchronism 
when complete synchronization is accomplished. For the optoelectronic feedback sys- 
tem, chaos synchronization involves neither the locking of the optical frequency nor 
the synchronization of the optical phase. For both optical feedback and optoelec- 
tronic feedback systems, where the transmitter is configured with a delayed feedback 
loop, anticipated and retarded synchronization can be observed as the difference be- 
tween the feedback delay time and the propagation time from the transmitter laser 
to the receiver laser is varied. For a synchronized chaotic communication system, 
the message encoding process can have a significant impact on the synchronization 
quality and thus on the message recoverability at the receiver end. It is shown that 
high-quality synchronization can be maintained when a proper encoding scheme that 
maintains the symmetry between the transmitter and the receiver is employed. 
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10.1 Introduction 

In a synchronized chaotic communication system, a chaos generator is used to gener- 
ate a chaotic waveform, which has the characteristics of a noise-like time series and a 
broadband spectrum. The message to be transmitted is encoded in the time domain 
on the chaotic waveform through a certain chaotic encryption scheme. An identical 
chaos generator at the receiver end regenerates the chaotic waveform. Message de- 
coding is then accompUshed by comparing the received signal with this reproduced 
chaotic waveform. This basic concept is illustrated in Fig. 10.1. Recent theoretical 
and experimental progresses on the control and synchronization of nonlinear dy- 
namical systems have allowed the demonstration of chaotic communication systems 
functioning in both radio and optical frequency regions [1, 2]. 

Transmitter Receiver 

Fig. 10.1. Basic concept of synchronized chaotic communicp.tion with unidirection- 
ally coupled transmitter and receiver. Ideally, the transmit,ter and the receiver are 
identical chaotic oscillators that are driven by the same signal. 

To develop a synchronized chaotic communication system, the nonlinear dy- 
namics of the devices used as the transmitter and receiver need to be thoroughly 
studied and understood first so that the desired chaotic states can be generated 
and controlled. Then, various issues regarding chaos synchronization between the 
transmitter and the receiver have to be investigated. For the implementation of a 
synchronized chaotic communication system, one of tlje most important such issues 
is the stability and quality of synchronization between the receiver and the trans- 
mitter in the presence of an encoded message because a communication system at 
work needs to carry a message. This is a profound issue that depends on the nonUn- 
ear dynamics of the transmitter and receiver and on the encryption scheme used to 
encode and decode the message. It has important implications on the performance 
of a chaotic communication system. 

Chaotic states exist in many nonUnear dynamical systems. For chaotic optical 
communications, one is concerned with lasers that can be used as nonlinear dy- 
namical devices to generate chaotic optical waveforms. Both fiber lasers [3]-[6] and 
semiconductor lasers [7]-[14] have been considered for this purpose. Most research 
in this area has focused on semiconductor lasers because of their dominant position 
in optical communication systems, their ability to support high-bit-rate messages, 
and the rich nonlinear dynamics they can be induced to display. 
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Of most interest for chaotic optical communications are three different semicon- 
ductor laser systems: the optical injection system, the optical feedback system, and 
the optoelectronic feedback system. These three systems all enter chaotic states under 
proper operating conditions, but they have very different nonlinear dynamics. They 
are rhodeled differently and require different numerical and experimental tools for 
analysis and investigation. The conditions and characteristics of chaos synchroniza- 
tion are also very different for these three systems. For example, both the optical 
injection system and the optical feedback system are sensitive to optical frequency 
and phase, but the optoelectronic feedback system is not. Both optical feedback 
system and optoelectronic feedback system are delayed feedback systems that have 
increased complexity as the delay time increases, whereas the optical injection sys- 
tem has no feedback mechanism. Chaotic optical communications implemented for 
various message encoding and decoding schemes using these three systems also have 
different performance characteristics [15]. They also have different degrees of sus- 
ceptibility to internal and external perturbations from noise. 

In this chapter, we review, based on our research results, the dynamics and syn- 
chronization of the three semiconductor laser systems that are considered for chaotic 
optical communications. Numerical methods for the simulation and analysis of these 
chaotic systems are discussed in Chapter 8.6. The performance chareicteristics of syn- 
chronized chaotic optical communication systems based on these laser systems for 
various message encoding and decoding schemes are eiddressed in Chapter 10.8. 

10.2 Basic Concepts of Laser Dynzimics 

The dynamics of a laser is governed by the coupling of three macroscopic physi- 
cal quantities: the intracavity laser field, E, the material polarization, P, and the 
population inversion density, JV. The population inversion provides the laser gain; 
it is coupled to the laser field through the material polarization. On the quantum- 
mechanical level, P and N are respectively determined by the off-diagonal and diag- 
onal density-matrix elements associated with the laser transition levels. Each of the 
three physical quantities has its characteristic relaxation time: the photon lifetime, 
Tc, also known as the cavity decay time, for the intracavity laser field E, the phase 
relaxation time, T2, for the polarization P, and the population relaxation time, Ti, 
for the population inversion density N. 

When only the temporal characteristics of a laser are of interest, as is the case 
in our consideration for chaotic optical communications at the present stage, the 
spatial dependencies of E, P, and N can be integrated out to result in purely time- 
dependent coupled differential equations that determine the temporal dynamical 
behavior of the laser. The equation for E, which originates from the wave equation, 
is originally a second-order differential equation. It can be reduced to a first-order 
differential equation by taking the slowly varying amplitude approximation, which is 
always valid for a laser because w » T^"^ for an optical frequency at u. The equation 
for P can be similarly reduced to the first order. The equation for N is originally 
a first-order differential equation because it originates from the first-order equation 
of motion of the density matrix. 

Thus, the temporal dynamics of a laser is mathematically governed by coupled 
first-order differential equations of the three quantities E, P, and TV with character- 
istic relaxation time constants TC, T2, and Ti, respectively. For a single-mode laser, 
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the intracavity laser field is simply the field of the single oscillating mode. Then, 
its dynamics is governed by three coupled first-order differential equations of the 
following general form: 

— = F(E, P, N)    with relaxation time constant TC, (10.1) 
dt 

— = G(E, P, N)    with relaxation time constant T2, (10.2) 
dt 

— = H(E,P,N)    with relaxation time constant Ti,     .        (10-3) 
dt 

where F(E,P,N), G{E,F,N), and H(E,P,N) are functions of E, P, and N that 
are characteristic of a particular laser. For a multimode laser, however, the total 
intracavity laser field is the combination of all oscillating laser modes. These mode 
fields can be coupled, but each of them has to be described by a separate equation. 
Thus, the dynamics of a multimode laser is governed by more than three coupled 
first-order differential equations of the following general form: 

—^ = F(... E, ..., P, AT)   with relaxation time constant TC, (10.4) 
dt 

— = G{... E, ...,P, N)   with relaxation time constant T2,        (10.5) 
dt 

— = H{...'Eq...,P,N)    with relaxation time constant Ti,        (10.6) 
dt 

where q is the laser mode index that takes on as many different values as the number 
of oscillating laser modes. 

For complex nonlinear dynamics such as chaos to be possible for a mathemati- 
cally continuous dynamical system such as a laser, whose dynamics is described by 
differential equations, two basic conditions must be satisfied. The first condition is 
clearly that there exists a certain nonlinear physical mechanism to make the system 
nonlinear for its dynamics to be described by coupled nonhnear differential equa- 
tions. The second condition is that the nonUnear system must have more than two 
dimensions because any mathematically continuous one- or two-dimensional system 
cannot have chaotic dynamics. These are universal requirements. In the following, 
we examine these two issues for laser systems. 

10.2.1 Nonlinear Mechanism 

A laser is inherently nonUnear for the simple fact that a laser has a threshold above 
which the population inversion in its gain medium is clamped. The gain medium 
is the bare minimum component of a laser, and it functions nonlinearly when a 
laser oscillates above threshold. Thus, the basic nonlinear mechanism that always 
exists in a laser is the nonUnearity of its gain medium. The response of the gain 
medium to the laser field is characterized by a resonant susceptibility XreB(w) as- 
sociated with atomic transitions at the oscillating laser frequency. The imaginary 
part, Xres('^)> of this resonant susceptibiUty contributes to the optical gain, p(E, A'^), 
that is a function of both the laser field and the population inversion density in the 
gain medium, whereas the real part, Xres(w), of the resonant susceptibiUty modifies 
the refractive index, n(E, N), of the gain medium, making it also a function of both 
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the laser field and the population inversion density in the gain medium. The real 
and imaginary parts of the susceptibility of a given medium are not independent 
of each other but are related through the Kramers-Kronig relations imposed by the 
causality requirement for any physical system. Thus ^(E, N) and n(E, N) of a gain 
medium are directly related to each other. Their relationship is in general a func- 
tion of the optical frequency w, the optical field E, and the population density N, 
as well as other parameters such as temperature. For practical purposes, however, 
their relationship at the laser oscillating frequency u is usually characterized by a 
linewidth enhancement factor, also known as antiguidance factor, b, defined as 

2w dn/dN     Xres /in7^ 

This factor is often treated as a constant for a given laser though it actually changes 
as the operating condition of the laser is varied. A positive value for 6 indicates that 
the refractive index of the gain medium decreases when the gain increases. This 
factor causes the Isiser frequency to change in response to changes in laser pumping 
condition and laser intensity. Thus, for a laser with a nonvanishing b value, non- 
hnearity in the optical gain also leads to nonUnearity in the refractive index of the 
gain medium; any gain nonlinearity that affects the amplitude of the laser field also 
affects its phase and frequency. 

Besides the intrinsic nonlinearity of the gain medium, additional nonlinear mech- 
anisms can be introduced through other nonUnear elements, incorporated either 
intentionally or unintentionally, in a laser. Though there exists a wide range of pos- 
sibilities, such nonlinear elements can generally be categorized as active or passive 
in terms of their operation and as absorptive or reactive in terms of their basic 
physical mechanism. An active nonlineeir element, such as an electro-optic modular 
tor, is one that is operated by an externally appUed signal, whereas a passive one, 
such as an all-optical nonlinear component, is simply operated by its response to 
the laser field without any actively applied signal. An absorptive nonlinear element, 
such as a saturable absorbing material, has its nonhnearity in the imaginary part of 
its susceptibility; thus, it changes its absorption coefficient in response to changes in 
the laser field parameters. A reactive nonlinear element, such as a nonlinear optical 
phase modulator, has its nonlinearity in the real part of its susceptibility; thus, it 
changes its refractive index in response to changes in the laser field. An active non- 
linear element can have either absorptive or reactive mechanism, or a combination 
of both, and so can a passive nonlinear element. 

10.2.2 Laser Classification 

It seems that any laser has at least three dynamical degrees of freedom because it has 
three dynamical variables of E, P, and N and both E and P are complex vectorial 
quantities consisting of amplitudes and phases. Indeed, even a free-running, single- 
mode laser can have three degrees of freedom, thus with its dynamics described in 
a three-dimensional phase space, if all of its three dynamical variables E, P, and N 
are independent of, but coupled to, one another. However, the reality is that most 
free-running, single-mode lasers are stable because they actually have only one or 
two degrees of freedom. Chaotic dynamics is not possible for such lasers. 
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For most lasers, not all three dynamical variables are independent of one another 
because of the differences in their characteristic relaxation time constants. Further- 
more, for a free-running, single-mode laser, both the directions and the phases of E 
and P are not part of the laser dynamics because the field vectors of a laser mode 
are well-defined and the phases of a free-running laser are decoupled from all other 
variables. Thus the degrees of freedom for many lasers can be significantly reduced. 
Arecchi et al. [16, 17] classified homogeneously broadened single-mode lasers into 
three different classes based on their differences in the characteristic relaxation time 
constants of the dynamical variables. 

For class A lasers, the photon relaxation time is much larger than both phase 
and population relaxation times of the gain medium: TC » Ti,T2. Physically, both 
polarization P and population N can respond very quickly to any variations in the 
laser field E. Thus, P and AT both follow the variations of E. Mathematically, both 
variables P and N can be adiabatically eUminated by expressing them as a function 
of E, reducing the independent dynamical variables to only E. Only the differential 
equation of E remains to define the dynamics of a class A laser. For a free-running, 
single-mode class A laser, the vector and phase of the complex vectorial field variable 
E are irrelevant to the laser dynamics. Then the only remaining differential equa^ 
tion for E can be reduced to a scalar differential equation in terms of the intracavity 
photon density, S, which is a real variable. Thus, the only possible solution for the 
laser is a constant stable output representing a fixed point in the phase space. No 
unstable dynamics can be expected. 

For class B lasers, both photon relaxation time and population relaxation 
time are much larger than the phase relaxation time of the material polarization: 
Tc, Ti » T2. In this situation, the polarization P follows the variations of both E and 
N. The variable P can be adiabatically eliminated by expressing it as a function of 
E and N. Thus, a class B laser is dynamically described by the coupled differential 
equations of E and AT. For a free-running, single-mode class B laser, the vector and 
phase of the field variable E are also irrelevant to the laser dynamics, and the differ- 
ential equation of E can be reduced to a scalar one of the real variable S. The dynam- 
ics of the laser is then described by two coupled first-order differential equations. The 
only dynamical behavior possible for such a system is periodic oscillation. Therefore, 
class B lasers can show relaxation oscillations but not instabilities and chaos. 

For class C lasers, all three relaxation time constants are of comparable magni- 
tudes: Tc w Ti « T2. None of the three dynamical variables can be eliminated. All 
three differential equations are required to describe the dynamics of a free-running, 
single-mode class C laser. Therefore, for certain laser parameters and operating con- 
ditions, complex dynamical behaviors including instabilities and chaos are possible 
for a single-mode class C laser oscillating in a free-running condition. 

Most lasers, particularly those that have well-developed commercial applications, 
belong to either class A or class B. Instabilities and chaotic dynamics do not nat- 
urally occur in these lasers when they are free running because they have at most 
two independent dynamical variables. To induce instabilities and complex dynamics 
in such lasers, it is necessary to increase their dynamical dimensions. This objective 
can be accomplished by many different approaches. For a single-mode laser, it is 
necessary to introduce some form of external perturbation or feedback to increase 
the dimension of the laser. For a multimode laser, the dimension of the laser is in- 
creased by the multiple oscillating modes if the phases or magnitudes, or both, of the 
fields of the multiple oscillating laser modes are nonlinearly coupled, either directly 
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or indirectly. This is the reason why instabilities and complex dynamics are often 
observed in multimode lasers but not in single-mode lasers unless a single-mode laser 
is somehow perturbed. 

10.3 Single-Mode Semiconductor Lasers 

In considering the temporal nonUnear dynamics of a semiconductor laser, here we 
take a lumped-circuit approach by integrating the spatial variations of the laser 
variables over the entire laser so that E, P, and N are macroscopic time-dependent 
dynamical variables of the laser. This approach is sufficiently accurate for describing 
the temporal dynamics of most semiconductor lasers, particularly single-mode semi- 
conductor lasers, because the dynamical variations of the laser field are generally on 
a time scale larger than the time it takes a photon to make a trip through the laser 
cavity. 

For a semiconductor laser, the population density N that provides the laser gain 
is the carrier density determined by that of the injected electron-hole pairs in the ac- 
tive region of the laser. The gain coefficient p of a semiconductor laser gain medium 
is a function of both the carrier density N and the laser field E. As is discussed 
above, this is the source of intrinsic nonUnearity for a semiconductor laser. For a 
semiconductor laser, the dependence of the gain coefficient on the laser field appears 
as a function of |E|^, which is proportional to the laser intensity and the intracavity 
photon density S. Thus, the gain can be expressed as a function of JV and S: g{N, S). 
The resonant material susceptibiUty associated with the laser transition and respon- 
sible for the laser gain is in general a second-rank tensor, but we take it to be a scalar 
Xrea for a semiconductor laser when laser modes of different polarization directions 
are not considered at the same time. The resonant susceptibility of a semiconductor 
laser gain medium in a laser oscillating at a frequency w is related to g{N, S) as 

Xres = --{b + i)9{N,S), (10.8) 

where n is the refractive index of the gain medium and b is the hnewidth enhance- 
ment factor defined in (10.7). For a semiconductor laser, b is positive. It typically 
has a value in the range of 2 < 6 < 7, but it can be as small as 1 or as large as 10 
for some lasers. Because of this factor, the gain is coupled to the refractive index; 
thus nonUnearity in the laser gain also leads to nonUnearity in the refractive index 
of the laser medium. This coupUng can significantly enrich the nonUnear dynamics 
of a semiconductor laser for which the phase of the laser field is a dynamical vari- 
able [18], such as the optical injection system or the optical feedback system. It is 
irrelevant to the dynamics of a semiconductor laser for which the phase of the laser 
field is not a dynamical variable, such as the optoelectronic feedback system. 

The population relaxation time Ti for a semiconductor laser is the spontaneous 
carrier recombination Ufetime, TS. For most semiconductor lasers, including the most 
commonly used single-mode lasers such as the distributed feedback (DFB) lasers and 
the vertical cavity surface-emitting lasers, the photon Ufetime TC is on the order of 
a few picoseconds, the carrier recombination Ufetime TB is on the order of a few 
hundred picoseconds to a few nanoseconds, and the polarization phase relaxation 
time Ta is on the order of about 100 femtoseconds. Thus, a semiconductor laser 
is a class B laser because TS > TC » T2. The resonant material polarization in a 
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semiconductor laser gain medium responds almost instantaneously to the variations 
in the laser field; thus P is related to the laser field E as follows: 

P(f) = eoXresE(t). (10.9) 

The polarization equation is then not needed for describing the semiconductor laser 
dynamics because the polarization of the gain medium is now completely defined by 
the laser field E and, through the dependence of Xres on N, by the carrier density N. 
Consequently, the dynamics of a single-mode semiconductor laser can be completely 
described by two coupled first-order differential equations for E and A^ as in (10.1) 
and (10.3), respectively, while the equation for P in (10.2) is eUminated. 

10.3.1 Rate Equations 

The condition TS,TC> T2 that makes a semiconductor laser a class B laser allows 
the dynamical equations of a single-mode semiconductor laser to be reduced to two 
coupled rate equations in the photon density S and the carrier density N. This 
procedure is known as the rate equation approximation. 

In the lumped-circuit approach used here to describe the temporal laser dynam- 
ics, the intracavity field of a single-mode semiconductor laser with a free-running 
mode frequency wo can be expressed as 

E(t) = eAit)e-'"°\ (10.10) 

where e is the unit vector for the laser mode field and A{t) is the total complex in- 
tracavity field amplitude at the firee-oscillating firequency wo. The intracavity photon 
density is related to the laser field amplitude A by 

S(t)=^^\A{t)\\ (10.11) 
nwo 

For a laser that has a photon hfetime of TC, the intracavity photon density decays 
at a photon decay rate, also called cavity decay rate, of 7c = TC^ through internal 
losses and output-coupling losses of the laser. This decay of photon density has to 
be counterbalanced by a growth of photon density for the laser to continue oscil- 
lating. The growth of the photon density is contributed by the amplification of the 
laser field through the optical gain in the laser medium. Thus, we can define a gain 
parameter, 7, that quantifies the concept of photon growth rate as 

y{N,S) = -giN,S). (10.12) 
n 

Note that the gain coefficient g has the unit of m~\ whereas the gain parameter 7 
has the unit of s"''. 

With the relationship between E and ^ defined in (10.10), the dynamical equa- 
tion for E can be expressed as one in A. Then, the two coupled first-order differential 
equations needed to describe the dynamics of a single-mode semiconductor laser can 
be expressed in A and AT as [8]: 

^ = -^A + i{m - wc)>l -I- J(l - ihhA + Fsp, (10.13) 
ai 2 ^ 

^ = 4_^,jV-2£°!^7l^r. (10.14) 
at       ed (Jo 
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where (JC is the longitudinal mode frequency of the cold laser cavity, T is the con- 
finement factor determined by the overlap of the laser mode field distribution with 
the active gain region, J is the injection current density, e is the electronic charge, 
d is the active layer thickness of the laser, 7s = T~^ is the spontaneous carrier decay 
rate, and n is the refractive iridex of the semiconductor medium. The spontaneous 
emission noise source Fsp = Fr+iFi has uncorrelated real and imaginary components 
and an effective delta-function self-correlation in time [19]: 

(F.{t)Fr{t')) = {Fit)F{t')) = ^5it -1'), (10.15) 

(Fr{t)F{t')) = 0, (10.16) 

where Rsp gives the rate of spontaneous emission into the mode. Without perturba- 
tion, no complex dynamics will develop from this single-mode laser. The laser has 
a free-running steady state that is characterized by a gain parameter saturated at 
the threshold gain parameter value of 

7th = ^, (10-17) 

a carrier density of A'^th clamped at that reached at the laser threshold, and a field 
amplitude of Ao with a corresponding photon density of So. 

Note that the equation for the field amplitude A given in (10.13) is a complex 
differential equation because A is a complex quantity consisting of magnitude and 
phase. Because the phase of the laser field of a free-running, single-mode semicon- 
ductor laser is not coupled to the magnitude of the field or the carrier density, it can 
be eliminated from the rate equations by converting (10.13) into a real differential 
equation in terms of the photon density S. Therefore, the dynamics of a free-running, 
single-mode semiconductor laser operating above threshold is sufficiefatly described 
by two real, first-order rate equations, one for S emd another for N: 

^ = -7,S + r-/S -f 2VS^Fs, (10.18) 
at 

^ = £-y,N-^S, (10.19) 
at       ed 

where Fa is a stochastic noise term derived from Fsp. Clearly, there are only two 
degrees of freedom in the two variables S and N for a free-running, single-mode semi- 
conductor laser. As is discussed in the preceeding section, such a two-dimensional 
continuous dynamical system cannot have any interesting dynamics except for re- 
laxation oscillations between the photon and carrier densities. 

10.3.2 Dynamical Peirameters 

We see from the coupled equations given in (10.13) and (10.14) that there are three 
parameters, 7c, 78, and b that appear in these dynamical equations of a semiconduc- 
tor laser. We also see that the b parameter disappears from the coupled equations 
given in (10.18) and (10.19) after the phase of the laser field is eliminated. As is dis- 
cussed above, the hnewidth enhancement factor 6 has an effect on the laser dynamics 
only when the phase of the laser field participates in the laser dynamics. 

Besides these three dynamical parameters, there are two more dynamical pa- 
rameters which specifically make the laser a nonUnear system. As we can see from 
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(10.13) and (10.14) or from (10.18) and (10.19), the laser would be a linear system 
characterized by Unear differential equations if the gain parameter 7 were a constant 
that is independent of N and S. The system becomes nonlinear only because 7 is 
a function of N and S. A relation of 7 to either AT or S in any form would already 
make the system nonlinear, but the fact is that 7 is a function of both N and S. 
There are different ways of expressing 7 as a function of N and S from theoretical 
and experimental viewpoints. Here we take a macroscopic approach to define the 
dynamical parameters that characterize the nonlinearities of the laser gain. This ap- 
proach is consistent with our lumped-circuit model and proves to be very convenient 
and accurate for both experimental measurement and theoretical modeling [20]. 

When a single-mode semiconductor laser is in a free-running steady state, its 
gain and carrier density are clamped at their respective threshold values of 7th and 
Nth, but the photon density reaches a constant value of So determined by the operat- 
ing level above the laser threshold. Under any dynamical perturbation, the gain can 
deviate from 7th due to the variations in the carrier and photon densities caused by 
the perturbation. The dependence of the gain parameter on the carrier and photon 
densities can be expressed as 

7 = 7th+7n(A^--^th)+7p(^-5o), (10.20) 

where 7„ is the differential gain parameter characterizing the dependence of the gain 
on the carrier density and 7p is the nonlinear gain parameter characterizing the ef- 
fect of gain compression due to the saturation of gain by intracavity photons. It has 
been found empirically that both 7„ and 7p stay quite constant over large ranges of 
carrier density and photon density in a given laser. For most practical purposes, they 
can be treated as constants over the operating range of a laser. These parameters 
are normally measured experimentally though they can also be calculated theoret- 
ically. Note that 7^ > 0 but 7p < 0. It is convenient to define a differential carrier 
relaxation rate, 7n, and a nonlinear carrier relaxation rate, 7p, as , 

7n=7„5o, 7p = -r7p5o. (10.21) 

Both 7n and 7p are rates that have the same unit of s~^ as 7c and 7s, and they all 
have positive values. Because 7^ and 7p are quite constant, both 7„ and 7p vary 
linearly with the laser power. 

The dynamics of a single-mode semiconductor laser is determined by five intrinsic 
dynamical parameters: 7c, 7s, 7n, 7p, and 6. For a given laser, 7c and 7s are constants 
that are independent of the laser power, but 7n and 7p are linearly proportional to 
the laser power. The 6 parameter is often treated as a constant, but it can vary 
with the operating condition of the laser. These five intrinsic dynamical parameters 
of a given laser can be experimentally measured using a four-wave mixing tech- 
nique [20]. The spectral characteristics and the strength of the noise source Fsp can 
also be experimentally measured [21]. For a single-mode semiconductor laser without 
any additional arrangement to increase its system dimension, the only dynamical 
behavior that can be observed is relaxation oscillation. The relaxation oscillation of 
a free-running, single-mode semiconductor laser has a relaxation rate of [20] 

7r = 7B + 7n + 7p. (10.22) 

and a relaxation resonance frequency of [20] 
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Table 10.1. Measured Parameters of a Semiconductor Laser. 

Parameter Symbol Value* 

Laser output power 
Intracavity photon density 
Confinement factor 
Injection coupUng rate 
Linewidth enhancement factor 
Relaxation resonance frequency 
Relaxation resonance angular frequency 
Total carrier relaxation rate 
Spontaneous carrier relaxation rate 
Spontaneous carrier lifetime 
Differential carrier relaxation rate 
Nonlinear carrier relaxation rate 
Cavity decay rate 
Photon lifetime 
Differential gain parameter 
Nonlinear gain parameter 
Spontaneous emission rate 

p 4 to 15 mW 
s 6 X 10"P cm-^ 
r 0.4 

n 1 X 10" s-^ 
b 3±1 

A (0.954P)^/^ GHz 

Qr (37.66P)i/^ GHz 

7r (1.458+ 0.435P) X 10^ s 

7s 1.458 X 10^ s-V 
Ts 686 ps 

7n 0.155P X 10^ s~^ 

7P 0.28P X 10^ s""^ 
7c 2.4 X 10" s-^ 
Tc 4.2 ps 
ffn 2.6 X 10-® cm^s-^ 

ffp -1.18 X 10-® cm^s-i 
^p 4.7 X 10^« V^'m-^s-i 

•The laser power, P, in the values of the power-dependent parameters is in mW. 
"This table is adapted from Refs. [20] and [21]. 

fir = 27r/r = (7c7n + 7s7p)^^^- (10.23) 

It can be seen from these relations that 7r varies linearly with, but not proportional 
to, the laser power, whereas fir and /r are proportional to the square root of the 
laser power. Table 10.1 shows, as an example, the dynamical parameters of a semi- 
conductor laser that are measiu-ed using a four-wave mixing technique with optical 
injection [20]. 

The operating condition of a solitary semiconductor laser is solely control by the 
injection current density J. It is thus convenient to define an operational parameter: 
J = [J/ed - ysNo)/jsNo, which is the normaUzed injection parameter indicating 
how high the laser is biased above its threshold. The intrinsic dynamical parameters 
and the noise sources of a given laser are not externally controllable parameters and 
therefore cannot be directly varied at will, though 7n and 7p are linearly propor- 
tional to the laser power and can be indirectly varied by varying the operating point 
of the laser. Therefore, for a solitary semiconductor laser, the only parameter that 
can be varied at will is the operational parameter J. 

10.3.3 Reformulated Dynamical Equations 

Because the field amplitude A is a complex variable, the coupled dynamical equations 
in terms of A and N given in (10.13) and (10.14), respectively, can be tranformed 
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into a set of three real equations in a form that shows explicitly the dependence on 
the dynamical laser parameters. This transformation is done by separating the mag- 
nitude and phase of the field amplitude and by defining normalized dimensionless 
dynamical variables that measure the variations with respect to the free-running 
condition of the laser in much the same manner as normaUzing J to J. The field 
amplitude can be expressed in terms of its magnitude and phase as 

^=|A|e'"^ = |^o|(l+a)e*'^, (10-24) 

and the carrier density can be expressed BSN = No{l + n). Thus we have three real 
variables: a = (iA| - |Ao|)/|Ao|, f, and n = {N - No)/No. The coupled dynamical 
equations in (10.13) and (10.14) can then be tranformed into the following three 

real equations: 

7c7n- 

. "TeJ 

da _ I 
dt " 2 

dip _ 

'dt "'2 l^J 
dn 
'di 

n -7p(2a-f o ) 

^^n-7p(2a-^a') 

(H-a) + Fa, (10.25) 

+ -^, (10.26) 
I + a 

^"^ = -7,n - 7n(l + affi - 7»J(2a -H a^) 

+I^j(2a-Fa^)(l-Ka)^ (10.27) 
7c 

The noise sources are related to Fsp as Fa  =  (F-cos^ - Fisin<p)/|^o|, Ff = 
{Frsm(p + FiCOS'p)/\Ao\. Thus, 

{F4t)F4t')) = {FAt)F^{t')) = ^5(t - t'), (10.28) 

{Fa{t)F^it')) = 0. (10.29) 

Although there are three dynamical equations in terms of the three real vari- 
ables o, ip, and n, we see from these equations that the phase variable ip does not 
appear in either the equation for a or that for n. Clearly, the dynamical variations 
of a and n are not affected by the value of the phase (p though they determine the 
phase variations. Therefore, the coupled equations in (10.25) and (10.27) for o and n 
completely determine the dynamics of the laser. The phase equation given in (10.26) 
can be ignored in this situation. As a consequence, this laser is a two-dimensional 
dynamical system, as is discussed above. 

A similar transformation can be carried out for the coupled equations of S and 
N in (10.18) and (10.19) by expressing S = So{l + s) to define s = {S - So)/So and 
by defining n as above. Then, (10.18) and (10.19) are transformed into the following 
form in terms of the normalized dimensionless variables s and n: 

^=.l^n{s + l)-'rps{s + l) + Fs, (10.30) 
dt Jy^ 

5 = _y^n - ^Js - 7nn(l +s) + ^5^^75(1 + 5), (10.31) 
dt 7c 

where F, = 2^/T+lFa- These two coupled equations can also be obtained directly 
from (10.25) and (10.27) by using the relation that s = 2a + a^. 
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10.4 Nonlinear 
Dynamics of Single-Mode Semiconductor Lasers 

Complex dynamics, such as sustained periodic oscillations or chaos, can be generated 
in a single-mode semiconductor laser by a certain external perturbation that pro- 
vides additional degrees of freedom, thus increasing the dynamical dimension of the 
laser. The complexity of the dynamics increases as the dimension of the perturbed 
laser system is increased. Many different schemes for perturbing a single-mode semi- 
conductor laser into chaotic oscillations are possible. What have been considered and 
intensively studied in recent years for chaotic optical communications are the fol- 
lowing three different semiconductor laser systems: the optical injection system, the 
optical feedback system, and the optoelectronic feedback system. These three sys- 
tems all enter chaotic states under proper operating conditions, but they have very 
different nonlinear dynamics. They are modeled differently and require different nu- 
merical and experimental tools for analysis and investigation. The conditions and 
characteristics of chaos synchronization are also very different for these three sys- 
tems. In this section, we review the theoretical model, the numerical results, and the 
experimentally observed phenomena regarding the dynamics of these three systems. 

10.4.1 Single-Mode Semiconductor Laser with Optical Injection 

Optical Injection 

MLD 

A^{t)e -iClt 

LD 
A(t) 

-► 

Fig. 10.2. Single-mode semiconductor laser subject to optical injection from a mas- 
ter laser. LD: laser diode; MLD: master laser diode. 

Figure 10.2 shows schematically a single-mode semiconductor laser subject to 
optical injection from a master laser. The injection field has a complex amplitude of 
Ai at an optical frequency of wi, which is detuned from the free-running frequency, 
LJo, of the slave laser by a detuning frequency of n = wi - wo. The following coupled 
equations are used to describe the dynamics of this optically injected single-mode 
semiconductor leiser [20]: 

^ = -'^A + i{iJo - '^c)A +^{1- ibhA + Fsp 
at 2 ^ 

+r)Aiexp{-int), (10.32) 

^ = 4_^,Ar-^7l^r, (10.33) 
at       ed nwo 

where rj is the injection coupling rate. Compared to the coupled equations in (10.13) 
and (10.14) for the solitary laser, an additional term representing the injection field 
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Fig. 10.3. Numerally calculated mapping of the dynamical states of an optically 
injected semiconductor laser operating at a constant current level of J = 2/3 as a 
function of the injection parameter £ and the detuning frequency /.In this map, S, 
PI, P2, and P4 indicate the regions of the stable injection-locked states, the period- 
one states, the period-two states, and the period-four states, respectively, and the 
chaotic states are indicated by the solid-black region. Laser parameters hsted in 
Table 10.1 are used to generate this map.[7] 

is added to the field equation. This modification completely changes the dynamics 
of the system by adding one more dimension to the system. 

To see clearly how the injection field changes the dimension of the system, we 
transform, by following the procedure outUned in the preceeding section, the cou- 
pled field and carrier equations into the following three coupled equations in terms 
of a, ip, and h: 

da 
di 
dip 

'dt 

dfi 

It 

. HBJ 
{1 + a) + Fa+ ^'ycC0si2iT ft+ <p),   (10.34) 

7c7n 

ysJ 
n-7p(2a-t-a ) 4- 

F^ g7c 
1+a     1+a 

= -ysfi - 7n(l + afn - 7, J(2a -f- a^) 

7c 

sm{2Trft + ip),    (10.35) 

(10.36) 

where ^ = 7?|Ai|/(7c|Ao|) is a normalized injection parameter, and / = n/27r is the 
detuning frequency. Compared to the equations in (10.25)-(10.27) for a solitary laser 
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where both a and n are independent of ip, we find that a and ip are now mutually 
coupled through the additional terms in (10.34) and (10.35) caused by the injection 
field. Because a and n are still coupled, all three equations in this system are now 
mutually coupled, meaning that all three variables a, ip, and n are relevant to the 
dynamics of this system. Therefore, an optically injected single-mode semiconduc- 
tor laser is a three-dimensional nonautonomous system that is capable of generating 
complex nonlinear dynamics. As the phase (p of the laser field is one of the three 
coupled dynamical variables, the dynamics of this system is phase-sensitive. We also 
see from (10.35) the effect of the b parameter on the dynamics of the laser through 
its coupling of the variations in the field amplitude and carrier density to changes 
in the phase of the laser field. 
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Fig. 10.4. Numerically calculated (a) attractor, (b) optical spectrum, (c) optical 
field, and (d) optical intensity of the chaotic state at the operating condition of 
J = 2/3, C = 0-03, and / = 0 for an optical injected single-mode semiconductor 
laser that has the parameters listed in Table 10.1. 

The dynamics of an optically injected single-mode semiconductor laser is de- 
termined by the five intrinsic parameters, 7c, 7s, 7ni 7P) and 6, discussed in the 
preceeding section. In addition, there are now three operational parameters, the 
current injection level J, the optical injection parameter $, and the detuning fre- 
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quency / = n/27r, that can be externally varied to control the dynamics of the laser 
in operation. The dependence of the dynamics of an optically injected laser on these 
intrinsic and operational parameters has been thoroughly studied [18]. Figure 10.3 
shows as an example a numerally calculated mapping of the dynamical states of an 
optically injected laser operating at a constant current level of J = 2/3 as a function 
of the injection parameter ^ and the detuning frequency /. Laser parameters listed 
in Table 10.1 are used to generate this map. It can be seen from Fig. 10.3 that an 
optically injected semiconductor laser follows a period-doubling route to chaos when 
one of its operational parameters is varied while the other two are fixed [22]. 
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Fig. 10.5. Experimentally measured temporal waveforms and corresponding power 
spectra of period-one, period-two, and chaotic states of an optically injected single- 
mode semiconductor laser. 

Figure 10.4 shows the numerically calculated attractor, optical spectrum, optical 
field, and optical intensity of a representative chaotic state of the system at an oper- 
ating condition of J = 2/3, f = 0.03, and / = 0. Experimentally measured temporal 
waveforms and power spectra of different dynamical states of an optically injected 
InGaAsF single-mode DFB laser at 1.3 fj,m wavelength are presented in Fig. 10.5. 
Because of the laser noise, the period-four states seen in the numerical mapping are 
very difficult to observe experimentally. 
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10.4.2 Single-Mode Semiconductor Laser with Optical Feedback 

Optical Feedback 

^^]  
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(a) (b) 

Fig. 10.6. Schematics of single-mode semiconductor lasers with optical feedback in 
(a) single-pass configuration and (b) multiple-pass configuration. 

Figures 10.6(a) and (b) show two possible schemes of delayed optical feedback 
to a single-mode semiconductor laser. In the single-pass scheme, the feedback loop 
consists of an optical isolator so that a fraction of the laser output is fed back to 
the laser in only one delay time of r defined by the length of the feedback loop. 
In the multiple-pass scheme, which often consists of an external mirror to partially 
reflect the laser output back to the laser, a diminishing fraction of the laser output 
continues to be fed back to the laser after every integral multiple of delay time r 
because the external mirror forms an external cavity with the output laser mirror. 
The following coupled equations are used to describe the dynamics of this optically 
injected single-mode semiconductor laser: 

^ = -^A + i{m - Wc)A -h J(l - ih)-(A + Fsp -I- anA{t - r)e•^  (10.37) 
at 2, I 

where a is the firaction of the laser output field that is fed back, TJ is the coupling 
rate for injecting the feedback laser field back into the cavity, T is the feedback delay 
time, and 6 is the phase difference between the feedback field and the intracavity 
field at the feedback injection point. The field equation in (10.37) for this system is 
equivalent to the well-known Lang-Kobayashi equation [23]. Strictly speaking, this 
equation is valid only for the single-pass feedback scheme shown in Fig. 10.6(a) be- 
cause it does not account for the multiple reflections between the output laser mirror 
and the external mirror of the multiple-pass scheme shown in Fig. 10.6(b). Thus, 
significant errors can occur when this model is used for a multiple-pass system at a 
high feedback strength. Compared to the coupled equations in (10.13) and (10.14) 
for the solitary laser, the feedback delay field term added to the field equation for 
this system can add more than one dimension to the system. Thus, this system can 
have even more complicated dynamics than the optical injection system. 

The coupled field and carrier equations in (10.37) and (10.38) can be transformed 
into the following three coupled equations in terms of o, i/?, and n: 
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da 
H 

dtp 
Hi 

n-7p(2a + o ) (1 + a) + Fa 
2 L 7s J 
+C7c[l + a{t - r)] cos[(^(t - T) - ^{t) + 9], 

b 
2 

+e7. 

h^n - '^p{2a + a ) 

l + a{t-T)   . 

1 + o(t) 
sin[(/j(t-T)-¥5(t) + e], 

= -7sn - 7„(1 + o)^n - 7s J(2a + o^) 

7c 

(10.39) 

(10.40) 

(10.41) 

where £, = a7j/7c is a normalized feedback parameter measuring the feedback 
strength. We see that, like those for the optical injection system, a, ip, and n are all 
relevant dynamical variables for the optical feedback system because all three differ- 
ential equations for them are mutually coupled. However, different from the optically 
injected laser, a single-mode semiconductor laser with optical feedback is an au- 
tonomous system that can have a dimension larger than three because two of its three 
dynamical equations are delay-differential equations. The dimension of the system 
increases with the delay time. The dynamics of this system is sensitive to the phase 9. 
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Fig. 10.7. Numerically calculated bifurcation diagrams for the dynamical states 
of a semiconductor laser with optical feedback (a) as a function of the normalized 
delay time r/r for a fixed phase of ^ = 0 and (b) as a function of the phase 9 for a 
fixed normalized delay time of r/r = 0.3. For both cases, the laser parameters listed 
in Table 10.1 are used, and the system is operated at J = 2/3 and ^ = 0.1. 

The dynamics of an optically injected single-mode semiconductor laser is deter- 
mined by the five intrinsic parameters, 7c, 78, 7n. 7PI and 6, as well as by three 
operational parameters, the current injection level J, the optical feedback parame- 
ter f, and the feedback delay time T. The operational parameters can be externally 
varied to control the dynamics of the laser in operation. A semiconductor laser with 
optical feedback has much more complicated dynamics than one with optical injec- 



10 Dynamics and Synchronization of Semiconductor Lasers 285 

tion because of its increasing dimension with the feedback delay time and because 
of the additional phase factor of 9. The phase factor 0 accounts for the microscopic 
variations of the feedback length on the scale of a fraction of the optical wavelength. 
Thus, the dynamics of this system depends on the feedback delay time at two levels: 
one is the macroscopic level at a fixed value of 6, and the other is the microscopic 
level at a fixed delay time with 0 varying within a 2-K range. Figures 10.7(a) and (b) 
show examples of the bifurcation diagrams far these two cases. 
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Fig. 10.8. Numerally calculated mapping of the high-frequency dynamical states 
of a semiconductor laser with single-pass optical feedback operating at a constant 
current level of J = 2/3 as a function of the feedback parameter ^ and the normalized 
delay time t — r/r. In this map, S, PI, P2, P4, Q, indicate the regions of the stable 
states, the period-one states, the period-two states, the period-four states, and the 
quasiperiodic states, respectively, and the chaotic states are indicated by the solid- 
black region. Laser parameters listed in Table 10.1 are used to generate this map. 

Besides its increased dimensionality and phase sensitivity, the dynamics of a 
semiconductor laser with optical feedback has other complications. Ther6 are basi- 
cally two types of chaotic dynamics for this system: (1) low-frequency fluctuations 
(LFFs), which are often observed near the laser threshold [24, 25, 26] but can also 
occur at high injection levels [27], and (2) broadband chaos. The LFFs are charac- 
terized by sudden power dropouts of the laser in the megahertz range. Dynamical 
states in the LFF regime follow an intermittency route to chaos [28]. The broad- 
band chaos, by comparison, has high-frequency continuous waveforms. Dynamical 
states in this regime are characterized by high-frequency fluctuations in the giga- 
herz range. In this regime, this system can follow either a period-doubling route or 
a quasiperiodicity route to chaos though the period-doubling route dominates. LFF 
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chaos is not useful for high-bit-rate chaotic communications. Thus only dynamical 
states relevant to broadband high-frequency chaos are considered here. 
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Fig. 10.9. Numerically calculated (a) attractor, (b) optical spectrum, (c) optical 
field, and (d) optical intensity of the chaotic state at the operating condition of 
J = 2/3, ( = 0.1, and r/r = 0.3 for a single-mode semiconductor laser with optical 
feedback that has the parameters hsted in Table 10.1. 

Figure 10.8 shows as an example a numerally calculated mapping of the high- 
frequency dynamical states of a semiconductor laser with single-pass optical feed- 
back operating at a constant current level of J = 2/3 as a function of the feedback 
parameter ^ and the normalized delay time f = r/r, where /r is the free-running 
relaxation frequency of the laser defined in the preceeding section. Laser parameters 
listed in Table 10.1 are used to generate this map. It can be seen from Fig. 10.8 
that the high-firequency dynamics of this system can follow either a period-doubling 
route or a quasiperiodicity route to chaos when one of its operational parameters is 
varied while the other two are'fixed. 

Figure 10.9 shows the numerically calculated attractor, optical spectrum, op- 
tical field, and optical intensity of a representative chaotic state of the system at 
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Fig. 10.10. Experimentally measured (a) temporal waveform and (b) power spec- 
trum of a chaotic state of a single-mode semiconductor laser with optical feedback. 

an operating condition of J = 2/3, ^ = 0.1, and f = r/r = 0.3. Experimentally 
measured temporal waveform and power spectrum of a chaotic state of an InGaAsP 
single-mode DFB laser with optical feedback are presented in Figs. 10.10(a) and (b), 
respectively [29]. 

10.4.3 Single-Mode 
Semiconductor Laser with Optoelectronic Feedback 
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Optoelectronic Feedback 
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PD 

Fig. 10.11. Schematic diagram of a semiconductor laser with delayed optoelectronic 
feedback. 

A semiconductor laser with delayed optoelectronic feedback is schematically 
shown in Fig. 10.11. In this configuration, a combination of photodetector and am- 
plifier is used to convert the optical output of the laser into an electrical signal that 
is fed back to the laser by adding it to the injection current. Because the photode- 
tector responds only to the intensity of the laser output, the feedback signal contains 
the information on the variations of the laser intensity, which is proportional to the 
photon density in the laser cavity. Therefore, the phase of the laser field is not part 
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of the dynamics of this system. The dynamics of this laser can be described by the 
following coupled equations of the photon and carrier densities: 

(10.42) 

• 7,iV - 75, (10.43) 

dvf{t - v)Siv)/So, (10.44) 
1 

where ^ is the feedback strength, r is the feedback delay time, and f{t) is the nor- 
malized response function of the optoelectronic feedback loop which accounts for 
the finite bandwidths of the photo detector, the amplifier, and the electrical para- 
sitic effects of the laser. In the ideal situation where the feedback loop has a flat, 
infinite bandwidth, then f{t) = 5{t) and y{t) = S{t)/So. When f{t) is not simply 
5{t), as is the case in a realistic situation, the system is characterized by coupled 
delay-diflerential-integral equations. 

The coupled equations in (10.42) and (10.43) can be transformed into the fol- 
lowing three coupled equations in terms of 5 and n: 

f = l^n{s + 1) - 7pS(S +1) + Fs, (10.45) 
at       J7s 

^ = 7,^(1 -I- J)y{t - r) - 7Bn - 7= J5 - 7„n(l -I- S) 
at 

+lLlRjs{l + s), (10.46) 
7c 

y{t) = f   dnfit -v)[i+ Hv)], (10-47) 

Though there are only two dynamical variables, s and n, both of which are real 
scalar quantities, this system is a delayed feedback autonomous system that can 
have a high dimension when the delay time is sufficiently long. Therefore, it can 
have chaotic dynamics. The dynamics of this system is not phase-sensitive. 

It can be seen that the dynamics of a single-mode semiconductor laser with 
optoelectronic feedback is again determined by the five intrinsic parameters, 7c, 
7s, 7n, 7p, and b. The parameter 6 does not have a direct effect on the dynamics 
of this system but only has an indirect effect through the coupling between the 
amplitude and phase of noise fluctuations not explicitly shown in the above model. 
The dynamics of this system can be controlled by three operational parameters, 
J, f, and T that can be externally varied in operation. In addition, the response 
function f{t) of the feedback loop also plays an important role in the dynamics of 
the system [30]. The significance of the function /(<) on the dynamics of the system 
depends on its form. In the ideal situation of an infinite bandwidth, f{t) = d{t), 
the dynamics of the system is not affected by the bandwidth Umitation. On the 
other extreme when f{t) represents that of a narrow band-pass filter, the chaotic 
dynamics can be completely eliminated. In our experimental and numerical studies, 
we have found that a practical broad, but finite, band-pass filter has the effect of 
changing the pulsing frequency but not the general dynamics of the system [30]. The 
optoelectronic feedback can be either positive, with ^ > 0 [30], or negative, with ^ < 
0 [31]. The dynamical phenomena for both cases have been studied in details [30, 31]. 
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Fig. 10.12. Numerically calculated mapping of the dynamical states of a single- 
mode semiconductor laser with optoelectronic feedback operating at a constant cur- 
rent level of J = 2/3 as a function of the feedback parameter ^ and the normalized 
delay time f = r/r- In this map, S, P, Q2, Q3 indicate the regions of the stable 
states, the periodic pulsing states, the two-frequency quasiperiodic pulsing states, 
and the three-frequency quasiperiodic pulsing states, respectively, and the chaotic 
pulsing states are indicated by the soUd-black region. Laser parameters Usted in 
Table 10.1 £ire used to generate this map. 

Figiu-e 10.12 shows as an example a numerically calculated mapping of the dy- 
namical states of a single-mode semiconductor laser with positive optoelectronic 
feedback operating at a constant current level of J = 2/3 as a function of the feed- 
back parameter | and the normalized delay time f = r/r, where /r is the free-running 
relaxation frequency of the laser. The dynamics of this system is very different from 
that of the optical injection system and that of the optical feedback system. The 
instability induced by the optoelectronic feedback causes the laser to pulse, starting 
from a regular pulsing state and then following a quasiperiodic pulsing route to a 
chaotic pulsing state as one of the operational parameters is varied while the other 
two are fixed. It is found that the pulse spacing correlates very well with the pulse 
peak. In a regular pulsing state, both the pulse spacing and peak are constant. In a 
quasiperiodic pulsing state, both vary quasiperiodically. In a chaotic pulsing state, 
both vary chaotically with the same signatiu'e. 

Figure 10.13 shows the numerically calculated attractor, optical spectrum, opti- 
cal field, and optical intensity of a representative chaotic state of the system at an 
operating condition of J = 2/3, i = 0.18, and f = 12.5. Experimentally measured 
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Fig. 10.13. Numerically calculated (a) attractor, (b) optical spectrum, (c)_ optical 
field, and (d) intensity of the chaotic state at the operating condition of J = 2/3, 
^ = 0.18, and f = 12.5 for a single-mode semiconductor laser with optoelectronic 
feedback that has the parameters hsted in Table 10.1. 

temporal waveforms and power spectra of different dynamical states of an InGaAsP 
single-mode DFB laser with optoelectronic feedback at different delay times are pre- 
sented in Fig. 10.14. Because of the laser noise, the three-frequency quasiperiodic 
pulsing states seen in the numerical mapping are very difficult to observe experi- 

mentally. 

10.5 Basic Concept of Chaos Synchronization 

A chaotic system is a dynamical system that is intrinsically sensitive to initial con- 
ditions by definition. For a chaotic system described in its phase space, two nearby 
initial conditions as two points in the phase space exponentially separate from each 
other when its dynamics evolves forward in time. Because of this exponential di- 
vergence on different initial conditions, it seems not possible to operate two chaotic 
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Fig. 10.14. Experimentally measured temporal waveforms and corresponding power 
spectra of (a) periodic pulsing, (b) two-frequency quasiperiodic pulsing, and (c) 
chaotic pulsing states of a single-mode semiconductor laser with positive optoelec- 
tronic feedback. 

systems to perform synchronized dynamics even when they are identical systems. In- 
deed, it is not possible to synchronize two isolated identical chaotic systems because 
of their sensitivity to initial conditions and to any small perturbations. However, 
when there is a proper driving signal to couple two chaotic systems, synchronization 
is possible. The feasibility of synchronizing two chaotic systems was first realized 
based on the theory proposed by Pecora and Carroll [32], and later generalized to 
the concept of passive-active synchronization proposed by Kocarev and Parlitz [33]. 
Based on these theories, chaos synchronization is possible if the difference between 
the outputs of the two chaotic systems possesses a stable fixed point with zero 
value when a driving signal is used to couple these two systems. Because chaos is 
usually noise-like in terms of its complexity and long-term unpredictability, chaos 
synchronization has generated great interest for its potential application in private 
communications. Because the discussions here focus on chaos synchronization for 
communication purposes, we consider only identical chaos synchronization in which 
two synchronized chaotic oscillators generate identical outputs. Generalized chaos 
synchronization, achieved when the outputs of two synchronized chaotic oscillators 
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are related by any function but not an identity function, is not addressed in the 
following discussions. 

10.5.1 General Review 

There are two methods, one proposed by Pecora and Carroll [32] and another pro- 
posed by Kocarev and Parlitz [33], to achieve chaos synchronization. The difference 
between these two methods is significant when the concept of chaos synchronization 
is implemented in real systems. 

To demonstrate the theory of chaos synchronization proposed by Pecora and 
Carroll [32], we first consider two chaotic systems described by x and y, and their 
respective equations. We assume that these two dynamical systems are identical. 
Each of these two systems performing synchronization can be decomposed into two 
subsystems, x = (xi,X2) and y = (yi,y2). One of the subsystems, say xi, de- 
composed from the first chaotic system, is used as the driving signal to couple the 
two chaotic systems and, at the same time, to replace the corresponding dynamical 
variables, represented by yi, in the second chaotic system. Synchronization is accom- 
pHshed when the remaining subsystems represented by xa and ya are synchronized. 
This method can be mathematically expressed as the following: 

x=(xi,X2), (10.48) 

^=Fi(xi,xa), (10.49) 
at 

^=Fa(xi,xa), (10.50) 
at 

^=Ga(xi,ya), (10.51) 
at 

where Ga = Fa is the required condition for the existence of perfect synchroniza- 
tion. When synchronization takes place, the deviation, xa - ya, between these two 
subsystems asymptotically approaches zero. The achievement of chaos synchroniza- 
tion in this method depends on the proper choice of the subsystem which works as 
the driving signal [32]. The subsystem used to provide the driving signal has to be 
extractable and separable from the first chaotic system. When the coupling signal 
is absent, the second system is actually identical to one of the subsystems decom- 
posed from the first chaotic system. Therefore, the dimension of the second system 
is smaller than that of the first chaotic system, and it is equal to one of the subsys- 
tems of the first chaotic system. For a three-dimensional chaotic system described 
by differential equations, the second system cannot be a chaotic system because its 
maximum possible embedding dimension is two. This method is generally referred 
to as the complete replacement method [34]. 

The method later proposed by Kocarev and Parlitz is known as the active-passive 
method [33]. In this method, the driving signal, s{t) = h(x), is a function of the 
dynamical variables, x, of the first chaotic system. For two chaotic systems that are 
physically coupled by a signal s(t), each system can be rewritten mathematically as 
if the system is driven by a common driving signal, D(s(t)), so that they can be 
mathematically expressed as the following: 

^=F(x,D(s(f))), (10.52) 
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^=G(y,D(s(f))), (10.53) 

where D(s(t)) is a function of the signal s(t). With the vector function G being 
equal to the vector function F, these two chaotic systems can be synchronized to 
each other if the difference e = x-y possesses a stably fixed point with a zero value. 
The fixed point exists when the average local Lyapunov exponents of the difference 
e are all negative. 

As is shown in the equations in (10.52) and (10.53), the driving signal does not 
replace any dynamical variable of the second system. Instead, the variables of the sec- 
ond system that correspond to those contained in the driving signal asymptotically 
approach those of the first system. When they are synchronized, the remaining vari- 
ables of the second system also synchronize with the remaining variables of the first 
system. In this method, the number of the dynamical variables of the second system 
is the same as that of the first system because the dynamical variables describing the 
second system are not partially replaced by the driving signal. Whether the two sys- 
tems have the same dynamical dimension or not when they are decoupled depends on 
the configuration of the setups to generate chaos and to synchronize both systems. 

10.5.2 Synchronization of Semiconductor Lasers 

In chaos synchronization utihzing semiconductor lasers as chaos generators, the dy- 
namical variables used for the driving signal are not always separable from others 
while some are simply not extractable from a laser. When the output laser field of 
the first laser system is transmitted and coupled, both its magnitude and phase are 
transmitted and coupled to the second laser. It is not possible to only transmit and 
couple the magnitude but not the phase, or only the phase but not the magnitude. 
Therefore, unless the phase is not part of the dynamics of the lasers, such as in the 
case of lasers with optoelectronic feedback, the synchronization between two laser 
systems depends on the coupUng of the two variables, the magnitude and phase of 
the laser field, at the same time. Furthermore, the carrier density is not directly 
accessible externally. Therefore, it cannot be used as the driving signal to couple the 
first and the second lasers. Since a semiconductor laser is an integrated entity, all the 
dynamical variables are definitely not replaceable. Therefore, chaos synchronization 
of semiconductor laser systems cannot be implemented with the complete replace- 
ment method proposed by Pecora and Carroll, but it is feasible if the active-passive 
method proposed by Kocarev and Parlitz is used. 

In semiconductor laser systems, the coupling between two laser systems is usu- 
ally achieved through the entire optical field or the field intensity of the first laser to 
additively connect the two systems. For such systems using an additive driving sig- 
nal to connect two dynamical systems, the general equations in (10.52) and (10.53) 
of the synchronization theory can be rewritten as 

^ = F(x) + aD(x), (10.54) 

^ = G(y)-f-«D(x), (10.55). 

where aD{x) has replaced the driving signal D(s(t)) because this special type of 
driving force is more suitable when the chaos synchronization system is designed 
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for communication purposes, and the coupling strength a has been separated from 
D(s(<)). As is mentioned in the theory of chaos synchronization, in order to achieve 
perfect chaos synchronization, the dynamics of two laser systems have to be de- 
scribed by identity equations. Therefore, if the first term, F(x), on the right-hand 
side of (10.54) describes the dynamics of a free-running semiconductor laser, the 
signal aD(x) is also the signal to drive the first semiconductor laser into chaotic 
states. If F(x) already contains what drives the laser into chaos, then the signal 
aD(x) can further influence the laser dynamics, sometimes increasing its complex- 
ity and dimensionality [35]. 

These general equations of chaos synchronization through an additive cou- 
pling can be written in another form. By defining f (x) = F(x) -f- aD(x) and 
g(y) = G(y) -I- aD(y), we can rewrite the equations as the following: 

^ = F(x) + aD(x) = f(x) , (10.56) 
at 

^ = G(y)-FaD(x) 

= G(y) + aD(y) -I- aD(x) - aD(y) 

= g(y) + a(D(x)-D(y)). (10.57) 

This expression makes a clear connection between the method proposed by Pec- 
ora and Carroll and that proposed by Kocarev and Parlitz: Because D(x) or D(y) 
contains only partial variables describing laser dynamics, the achievement of chaos 
synchronization requiring D(x) - D(y) =0 effectively replaces these partial vari- 
ables in the second equation by those in the first equation. This expression also 
provides an intuitive picture about the occurrence of synchronization though the 
dynamics of each system is sensitive to initial conditions. This issue is addressed in 
more detail in Chapter 8.6. 

No matter which expression is used to describe the synchronization, we have 
G = F, thus g = f when all the parameters axe matched. Thus, one can see from 
(10.54) and (10.55) or from (10.56) and (10.57) that perfect synchronization is pos- 
sible only when G = F and g = f • Any mismatch between the equations describing 
the two systems can either deteriorate the synchronization quality or make the syn- 
chronization impossible. 

10.6 Chaos 
Synchronization of Single-Mode Semiconductor Lasers 

Chaos synchronization theory requires that the two laser systems to be identically 
synchronized be described by identical equations, as is discussed in Section 10.5. 
A single-mode semiconductor laser is a class B laser that does not have complex 
dynamics in its free-running condition in the absence of an external perturbation. 
Thus an external perturbation is necessary to drive the lasers into chaos. When this 
condition is combined with the requirement for identical chaos synchronization, the 
external perturbation that drives the transmitter laser into chaos has to be contained 
in the driving signal, aD(x), that is coupled to the receiver laser. Therefore, the ex- 
ternal perturbation chosen to drive the transmitter laser into chaos usually hmits the 
design of the system to perform chaos synchronization. For this reason, the criteria 
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used to categorize different semiconductor laser systems based on different exter- 
nal perturbations can be used to categorize the systems devised to achieve chaos 
synchronization. In this section, we discuss chaos synchronization of the three semi- 
conductor laser systems categorized according to the external perturbation used to 
drive the transmitter into chaos as is discussed in Section 10.4. They are the optical 
injection system [7], the optical feedback system [9]-[12], and the optoelectronic feed- 
back system [13,14]. All three systems considered here for chaos synchronization for 
the purpose of chaotic optical communication are unidirectionally coupled systems. 

Different systems have different characteristics regarding chaos synchronization. 
For optical injection and optical feedback systems, the frequency, phase, and am- 
plitude of the optical fields of both transmitter and receiver lasers are all locked in 
synchronism when synchronization is accomplished [7, 29] because both phase and 
amplitude of the laser field participate in the dynamics of these systems. Besides 
the complete synchronization of the entire optical field, the optical injection system 
exhibits synchronization sensitivity to the optical phase difference between the in- 
jection field and the transmitter laser field. The optical feedback system exhibits 
phase sensitivity only when the receiver has a closed-loop configuration. For the op- 
toelectronic feedback system, chaos synchronization does not involve the locking of 
the optical frequency or the synchronization of the optical phase because the phase 
of the laser field does not participate in the nonlinear dynamics of this system. Syn- 
chronization of this system is not phase sensitive [13]. For both optical feedback 
and optoelectronic feedback systems, where the transmitter is configured with a de- 
layed feedback loop, anticipated and, retarded synchronization can be observed as 
the difference between the feedback delay time and the propagation time from the 
transmitter to the receiver laser is varied [36]. 

Although these three systems have different synchronization characteristics, all 
of them exhibit multiple synchronous scenarios regardless of the differences in their 
nonlinear dynamics. Besides the true chaos synchronization described by the the- 
ory of identical chaos synchronization discussed in Section 10.5, one or two other 
synchronous phenomena are observed for each system under different operating con- 
ditions [37, 39]. These other synchronous phenomena, such as chaotic driven oscil- 
lation and chaotic modulation, have different signatures compared to true identical 
chaos synchronization. 

In this section, we address the various characteristics of chaos synchronization 
in unidirectionally coupled semiconductor laser systems. Chaos synchronization in 
all three semiconductor laser systems covered in this chapter has been accomplished 
and their characteristics carefiiUy studied. For each of the three different systems, 
we first discuss the specific requirements for true identical chaos synchronization 
in the system, followed by the demonstration of experimental results. The various 
interesting characteristics and phenomena discussed above have all been observed 
experimentally, but we shall not show the results for every one of them in each of 
the three system. Instead, a particular phenomenon is appropriately demonstrated 
with only one of the three systems as an example. The synchronization of the entire 
optical chaotic waveform, as well as the phase sensitivity of chaos synchronization, is 
demonstrated in the optical injection system. The existence of multiple synchronous 
scenarios in one system under different operating conditions is demonstrated in the 
optical feedback system. The anticipated and retarded synchronization as the special 
characteristic of a system configured with a feedback loop is clearly demonstrated in 
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the optoelectronic feedback system. All the results shown in this section are obtained 
from experiments. 

Before proceeding with the detailed discussions on chaos synchronization in these 
systems, it is necessary to define a quantitative measure of the synchronization 
quality. There are a few different ways of measuring the synchronization quality. The 
simplest and most commonly used measure is the correlation coefficient between the 
two waveforms to be synchronized. The correlation coefficient is generally defined as 

P = 
{[X{t) - {X{t))\[Y{t) - {Y{t))]) 

{\X{t) - {X{tWf'^{\Y{t) - {Y{tW) 2\l/2' 
(10.58) 

where X{t) and Y{t) axe the outputs of the transmitter and the receiver, respec- 
tively, and {■) denotes the time average. The correlation coefficient is bounded as 
-1 < p < 1. A larger value of \p\ indicates a higher synchronization quality. 

10.6.1 Synchronization of Optical Injection System 

Interferometer 
PRISM 

a/. -    "BS 
^ ^>- uT n TLD |-^--      ► .,  ,  Cj D    >                  •" 

Eie'^                          01 

/ 

/ 

BS^/^BS 

Ei 

MLD                 '       y 

01   

Fig. 10.15. Schematic of the experiment of complete chaos synchronization for 
semiconductor lasers subject to optical injection. Ei is the injection field from the 
master laser. MLD: master laser diode, TLD: transmitter laser diode, RLD: receiver 
laser diode, BS: beam splitter, 01: optical isolator. 

The configuration for chaos synchronization in the optical injection system is 
schematically shown in Fig. 10.15. The optical output of the master laser is split 
into two beams: The one denoted by Ei{t) is injected to the transmitter laser, and 
the other beam denoted by Ei{t)e*" is injected into the receiver laser together with 
the output of the transmitter laser. The existence of the optical phase 0 can be real- 
ized from the fact that the optical field of the transmitter encounters the output field 
of the master laser twice. The first time is when the transmitter receives the master 
laser output as the optical injection field to drive the transmitter into a chaotic state, 
and the second time is when the transmitter output is combined with the master 
laser output to be transmitted and injected into the receiver laser. The optical field, 
as the intracavity field and thus the output field, of the transmitter laser may not see 
the same optical phase of the master laser field at these two locations. The difference 
in this relative optical phase is indicated by 5 as is contained in Ei{t)e^ . 
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According to the schematic in Fig. 10.15, the transmitter can be modeled by the 
following coupled equations in terms of the complex intracavity laser field amplitude 
A^ and the carrier density iV'^ [7, 8], as has been discussed in Section 10.4: 

+vEi{t), (10.59) 

^=J-- 73iV^ - ^7l^^^, (10-60) 
at        ed nuJo 

where the superscript T labels the variables of the transmitter. The receiver, driven 
by the transmitted signal s{t) = aA'^{t) + Ei{t)e^\ with a being the coupUng 
strength, is described by 

^ = -^^^ + i(a;J - o;,^)^^ + ^(1 - i6^)7^^ + F^ + vs{t) 
at z i 

= _ M _ a^ A^ + ii^J", -u^^)A^ + |(1 - ih^hA^ + Fl 

^r)Ex{ty'-^a-q{A' -J^), (10.61) 

^ = 4 _ ^,JV^ _ '^^^\A^\\ (10.62) 
at        ed rkJo 

where the superscript R labels the variables of the receiver. The definitions of all 
other variables can be found in Section 10.4. 

Based on the synchronization concept proposed by Kocarev and Parlitz [33], 
the existence of a perfect synchronization solution, A^ = A"^, requires that 6 = 0, 
Acuc = wj - wf = 0, and the two lasers be identical except that 7^ = 7?^ + 27?a [7]. 
The requirement on the optical phase 6 is recognized as the phase sensitivity of 
chaos synchronization for this system. Prom the steady state condition of a free- 
running semiconductor laser, we further obtain the required detuning between the 
free-running frequencies of the transmitter and the receiver due to the difference in 
7c as the following: 

wj - a;o^ = ^wc + (b^-yl - 6''7?)/2. (10.63) 

When AiJc = 0, we obtain wj - wj^ = (b'^7?' - &^7?)/2. Because A'^{t) and A^{t) 
are both complex field amplitudes at the free-running frequency of the transmitter, 
complete chaos synchronization with A^ = A"'^ requires that the fast-varying optical 
phase, the slowly-varying phase, and the field amplitude of the receiver output be 
all synchronized to those of the transmitter output. 

The injection strength from the master laser to the transmitter is adjusted so 
that the transmitter is operated in a chaotic state, the power spectrum of which is 
shown in Fig. 10.16(a). The receiver is synchronized to the transmitter when the rel- 
ative optical phase difference, 9, is zero. When synchronization is accomplished, the 
detuning between the free-running frequencies of the transmitter and the receiver 
is around -32.6 ± 0.9 GHz, which satisfies the frequency condition of synchroniza- 
tion given in (10.63). The power spectrum of the synchronized receiver is shown 
in Fig. 10.16(b), which is very similar to that of the transmitter. The power spec- 
trum of the channel signal that is the superposition of the transmitter output and 
the master laser output is shown in Fig. 10.16(c) as a reference. The quality of 
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Fig. 10.16. Experimental results of chaos synchronization for the optical injection 
system when 0 is zero: (a), (b), and (c) power spectra of the transmitter output, 
receiver output, and channel signal, respectively; (d) correlation plot between the 
receiver output, X{t), and the transmitter output, Y{t); (e) correlation plot between 
the receiver output, X{t), and the channel signal, Y{t). 

the experimentally achieved synchronization with 0 = 0 is shown in Fig. 10.16(d) 
through the correlation plot between the intensities of the transmitter and receiver 
waveforms. The synchronization quality is measured to be p =i 0.89. The correla- 
tion between the channel signal and the receiver waveform is also measured and is 
found to be p ~ 0.67 as is shown in Fig. 10.i6(e). Comparing the correlation plots 
in Fig. 10.16(d) and 10.16(e), we observe that the receiver is synchronized to the 
transmitter output, but not to the channel signal. 

The synchronization on both the fast-varying optical phase and the slowly- 
varying phase of the chaotic waveform is verified through optical interference with 
the results shown in Fig. 10.17. The intensity of the constructive coherent interfer- 
ence is shown in Fig. 10.17(a), and that of the destructive interference is shown in 
Fig. 10.17(b). The intensity extinction ratio is larger than 5. This provides the evi- 
dence of the synchronization on both the fast-varying and slowly-varying phases as 
well as on the field amplitude. As is expected from the theory, the entire optical field 
of the receiver is synchronized to that of the transmitter when chaos synchronization 
is achieved. 

Different from the optical feedback and the optoelectronic feedback systems, this 
system exhibits the synchronization sensitive to the relative optical phase difference, 
0, as is discussed in the condition of the synchronization for this system. As is ex- 
pected from the theory, when we gradually tune 9 away from zero without changing 
the other operating conditions, the receiver quickly desynchronizes from the trans- 
mitter. The power spectrum of the desynchronized receiver for S = TT is shown in 
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Fig. 10.17. Optical interference of synchronized fields from transmitter and receiver: 
(a) constructive coherent interference, (b) destructive coherent interference. 
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Fig. 10.18. Experimental results for the optical injection system when the receiver 
is desynchronized from the transmitter at 5 = TT: (a) power spectrum of the receiver 
output, (b) correlation plot between the receiver output, X{t), and the transmitter 
output, Y{t), (c) power spectrum of the channel signal, (d) correlation plot between 
the receiver output, X{t), and the channel signal, Y{t). The power spectrum of the 
transmitter output is that shown in Fig. 10.16(a). 
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Fig. 10.18(a). The correlation plot between the transmitter and the receiver is shown 
in Fig. 10.18(b). The correlation quality in this case drops to p ^ 0.04. As a com- 
parison, the power spectrum of the channel signal is shown in Fig. 10.18(c), and the 
synchronization quality between the receiver and the channel signal is p ~ 0.06. 

From these observations, we see that complete synchronization of this system is 
achieved by the simultaneous synchronization of the fast-varying optical phase, the 
slowly-varying phase, and the intensity of the optical chaotic waveform under the 
condition that the transmitter and receiver lasers are frequency-locked. Besides this 
synchronization characteristic, the achieved synchronization in this system is very 
sensitive to the relative optical phase difference between the master laser field and 
the transmitter laser field in the signal received by the receiver. A mismatch in this 
optical phase can completely desynchronize the system. This phase sensitivity is due 
to the fact that the receiver need two optical driving signals to achieve synchroniza- 
tion: One is the transmitter laser output, and the other is the master laser output. 

10.6.2 Synchronization of Optical Feedback System 
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Fig. 10.19. Schematic of the experiment of chaos synchronization for semiconductor 
lasers with optical feedback. TLD: transmitter laser diode, RLD: receiver laser diode, 
01: optical isolator. 

The configuration for chaos synchronization in an optical feedback system is 
schematically shown in Fig. 10.19. In this example, we only consider a receiver with 
an open-loop configuration. Assuming that the laser parameters of the transmitter 
and the receiver are matched as required by the theory of chaos synchronization, 
the transmitter configured with the optical feedback, with a^ being the feedback 
strength, can be modeled by the following coupled equations: 

at 2 ^ 

WnA^{t-ry'\ 

dN^ J -KTT 2eon' 
l\A 

T|2 

(10.64) 

(10.65) 
dt        ed      '°' hhJo 

The receiver, driven by the transmitted signal a^A'^{t - T) with Q^ being the 
coupling strength, can be described by 

^ = _:^A^ + j(a,o - ui,)A^ + J(l - ih^A'' + F^ 
dt 2 2 

+a''vA'^{t-T)e''\ (10.66) 
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^=J-^^N^-?^^lAy, (10.67) 
at        ed nuo 

where T is the propagation time of the driving signal A'^{t) from the transmitter to 
the receiver. 

Since ^i is the difference between the fast-varying optical phase of the transmit- 
ter intracavity field and that of the feedback optical signal from the time delay of the 
feedback loop, we have 6i = UQT. Similarly, we have 02 = WQT = WO(T -f At), where 
At = T — r. Based on the concept of chaos synchronization, the existence of perfect 
synchronization requires that the rate equations of the transmitter and the receiver 
be identical. Therefore, the receiver should be synchronized to the transmitter with 
a time shift such as A^{t) = A^it - At)e*"°'^^ if they can be synchronized. FVom 
the practical point of view, the phase delay term 6i can vary from 0 to 2IT even 
when the feedback delay time is fixed. This is because the optical frequency varies 
so fast that a small inaccuracy in the length of the feedback loop can significantly 
change this phase value, but such small inaccuracy in the length of the feedback 
loop is not significant for the dynamics of the transmitter if the phase change is not 
considered. Nevertheless, the receiver will self-adjust the synchronization time to 
response to any inaccuracy in the length of the feedback loop of the transmitter be- 
cause the receiver has an open-loop configuration without feedback. Therefore, the 
synchronization condition is not sensitive to the optical phases, Oi and 62, though 
the dynamics of the transmitter is sensitive to 61. When A^{t) = A'^{t- At)e'"^°^*, 
the entire optical chaotic waveforms of the transmitter and the receiver are synchro- 
nized except that the synchronization can be anticipated or retarded. We will use 
the optoelectronic feedback system as the example to demonstrate anticipated and 
retarded synchronization. In this setup, we present the existence of different tjrpes 
of synchronous chaotic phenomena that are experimentally observed [37]. 

In this system, there are two types of synchronous chaotic phenomena observed 
in experiment and theory [37, 38]. One is true chaos synchronization that defined by 
the concept of identical synchronization discussed in Section 10.5, and the other is 
defined as chaotic driven oscillation [38]. The difference between these two types of 
synchronous scenarios is examined with regards to the coupling strength from the 
transmitter to the receiver, the frequency detuning between the transmitter and the 
receiver, and the synchronization time of the receiver to the trEinsmitter output or, 
equivalently, the channel signal as the optical injection field in this setup. 

We first focus on the difference of these two types of synchronization states in 
the coupling strength. The chaos synchronization defined as the type I synchronous 
scenario occurs at the operating condition when a^ = a^. The intensity of the trans- 
mitter (upper trace) and the synchronized intensity of the receiver (lower trace) are 
shown in Fig. 10.20(a). This synchronous phenomenon satisfies the condition of the 
coupling strength required by chaos synchronization. When the coupling strength 
incresises, the system loses synchronization as is shown in Fig. 10.20(b), where we 
have a^ ~ 3.2 a^. However, when the coupUng strength is about ten times the feed- 
back strength, synchronization between the two lasers occurs again. Their intensities 
are shown in Fig. 10.20(c), where we have the operating condition of a^ = 10 a'^. 

The change of the synchronization quality along with the change of the coupling 
strength can be calculated by the correlation coefficient p. The correlation coeffi- 
cient of these synchronous scenarios as a function of a^ is presented in Fig. 10.21. 
As we can see in the figure, the regime, marked by I, for the chaos synchronization is 
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Fig. 10.20. TVansmitter laser output (upper trace) and receiver laser output (lower 
trace) measured from the synchronization experiment for the optical feedback sys- 
tem, (a) o[^ = a^\ (b) a'^ = 3.2a^; (c) a'^ = lOa^. In (a) and (c), the lower traces 
are shifted in time to match with the upper traces for the purpose of display [37]. 

much smaller than the regime, marked by II, for the chaotic driven oscillation. In a 
large region separating these two regimes, no synchronous phenomena are observed. 
At the point "A" labeled in Fig. 10.21, the correlation coefficient reaches its lowest 

value of /9 = 0.22. 
Because this setup is a feedback system, there should exist a time lag At be- 

tween the chaotic waveform of the transmitter and that of the receiver when true 
chaos synchronization is accomplished. It is then interesting to examine if there is 
any difference in the characteristic of the time lag for both types of the synchroniza- 
tion states. To investigate the difference between these two types of synchronization 
states, the dependence of the time lag At on the delay time r is experimentally 
measured, and the result is shown in Fig. 10.22. As we can see from the figure, the 
relationship between At and r in the type I synchronous scenario is that At = T-T, 
which is predicted by the theory of the chaos synchronization for this system. How- 
ever, for the type II synchronous scenario. At is independent of the feedback delay 
time r and is equal to T. This indicates that, for the type II synchronous scenario, 
the receiver duplicates the transmitter output at the moment when receiving it, as 
is expected in a synchronous scenario of driven oscillation. 

The difference between these two types of synchronous phenomena can also be 
found in their tolerance to the detuning between the free-running frequencies of 
the transmitter and the receiver lasers. The experimental examination, shown in 
Fig. 10.23, demonstrates that the type I synchronous scenario has very limited tol- 
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Fig. 10.21. Measured correlation function versus injection strength for chaotic in- 
jection signal in the synchronization experiment for the optical feedback system [37]. 
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erance on this detuning frequency, whereas the type II scenaxio has much larger toler- 
ance. For the type I synchronous scenario, the synchronization quality, measured by 
p, decreases dramatically when the detuning frequency is tuned away from zero, as is 
shown in Fig. 10.23(a). This result satisfies the criteria of the chaos synchronization 
theory for this system. For the type II synchronous scenario, the range of the detun- 
ing frequency, shown in Fig. 10.23(b), to acquire good synchronization is not Umited 
to the zero detuning frequency. Instead, it matches the stable locking range of the 
receiver subject to the optical injection from the transmitter when the transmitter 
is operated as a free-running laser. The range of the detuning frequency to obtain 
the stable locking under the injection strength of a^ = 11.2 a^ in this case is close 
to -12.8 GHz < n/27r < 0.7 GHz. This demonstrates that the type II synchronous 
scenario with good synchronization quality is achieved over the entire stable locking 
regime of the receiver laser subject to the optical injection from the transmitter. 
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Fig. 10.23. Correlation function versus frequency detuning at the injection level (a) 
a^ « a^ and (b) a^ K; l\.2 a^ for chaotic injection signal in the synchronization 
experiment for the optical feedback system [37]. 

As we can see from the discussion above, besides the type I scenario of true chaos 
synchronization, the type II synchronous chaotic scenario of chaotic driven oscilla^ 
tion is also observed in the system. The type I synchronous scenario is achieved 
when the operating condition satisfies the requirement of chaos synchronization for 
this system, which means that the coupling strength has to be equal to the feedback 
strength, the frequency detuning between the transmitter and the receiver has to be 
as close to zero as possible, and the synchronization time of the receiver to the trans- 
mitter output has to change with the length of the feedback loop in the transmitter 
system. In contrast, the achievement of the type II synchronous scenario of chaotic 
driven oscillation requires a large coupling strength. It is also not sensitive to the 
frequency detuning as long as the receiver is injection-locked in the stable locking 
region with the transmitter as the master laser to provide the optical injection field. 
The synchronization time of the receiver to the transmitter output in this scenario 
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also does not change with the length of the feedback loop. Therefore, only the type 
I scenario matches the criteria for true chaos synchronization. 

10.6.3 Synchronization of Optoelectronic Feedback System 

fit) 
PD 

j^it) 

LD 

/» 

LD 

Fig. 10.24. Schematic of the experiment of anticipated and retarded synchroniza- 
tion for semiconductor lasers with delayed optoelectronic feedback. LD: laser diode; 
PD: photodetector; A: ampHfier. 

The schematic of two unidirectionally coupled semiconductor lasers with delayed 
optoelectronic feedback is shown in Fig. 10.24. Their dynamics can be described by 
the rate equations of S and N as discussed in Section 10.4. Assuming that the laser 
parameters between the transmitter and the receiver are matched as required, the 
transmitter leiser can be modeled by the following equations: 

^- = -^^S" + r75^ + 2^/So5^F7, 
at 

i!f = j^ji+e/(.-.)]-7.;v--7s^ 

J —oo 

and the received laser can be modeled by 

d5^ 
dt 

dN 
dt ~ = i^ [^ + '^^^^^ - T-) + (1 - c)^y''{t - r)] - 7sN^ 

-75^, 

y'^^(t)= f   dr,f''{t-v)S''{v)/So, 
J —CO 

y^{t)= f   dr^f\t-ri)S\rt)ISo. 
J —OO 

(10.68) 

(10.69) 

(10.70) 

(10.71) 

(10.72) 

(10.73) 

(10.74) 
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The transmitter laser has an optoelectronic feedback loop with a delay time T. 

Driven by the delayed feedback signal S'^{t - r), the transmitter laser output S (t) 
becomes chaotic. Part of the transmitter laser output is then unidirectionally coupled 
to the receiver laser. In general, the receiver laser can also have its own optoelectronic 
feedback loop. The total driving signal to the receiver laser is cS''^{t - T) + (1 - 
c)S^{t-T), where T is the transmission time and T is the delay time of the feedback 
loop in the receiver, which is the same as that in the transmitter. The factor c can 
be varied from 0 to 1. When c = 1, the receiver has an open loop. When c < 1, the 
receiver has a closed feedback loop. Under chaos synchronizJation, the receiver laser is 
forced to follow the transmitter laser as S^{t-T) = S'^{t-T), which is equivalent to 
S^(t) = S'^{t-T+T). Therefore, for true chaos synchronization, there is a time shift 
between the outputs of the transmitter and receiver lasers. When T>T, the receiver 
is synchronized to the transmitter with a retardation time of T - T in a retarded 
synchronization regime. When T <T, the receiver is synchronized to the transmitter 
with an anticipation time of T - T in an anticipated synchronization regime [36]. 

Experimental results of anticipated and retarded synchronization are shown in 
Fig. 10.25. In the experiment, the time difference is first set to be T - r = 0.0 ns 
by adjusting the transmission path and the feedback loops. Figure 10.25(a) shows 
the waveforms of the chaotic outputs of the transmitter laser (upper trax:e) and the 
receiver laser (lower trace), respectively. As can be clearly seen, the two waveforms 
are almost identical chaotic pulsing waveforms and the time shift between them is 
zero, which indicates that the receiver laser is synchronized to the transmitter laser 
with no retardation because T = T. In the second experiment the time difference is 
set to be T - r = +4.0 ns by prolonging T. Figure 10.25(b) shows the waveforms of 
the transmitter and the receiver lasers, respectively, in this situation. It is clear that 
the receiver laser output lags behind the transmitter laser output with a retardation 
time of 4.0 ns. The two lasers are now synchronized in the retarded synchronization 
regime. In the third experiment the time difference is set to be T - r = -4.0 ns 
by shortening T. Figure 10.25(c) shows the synchronization traces obtained in this 
situation. We can clearly see that the receiver laser output now leads the transmitter 
laser output by an anticipation time of 4.0 ns. Thus anticipated synchronization is 
observed between the transmitter laser and the receiver laser. 

Experiments have been conducted in both the closed-loop configuration with 
different c factors and the open-loop configuration with c = 1 [36]. The phenomena 
of anticipated and retarded synchronization are observed in all the cases though 
the quality of chaos synchronization drops dramatically as the value of the c factor 
drops [13]. The time shift between the outputs of the transmitter and the receiver is 
denoted as At. The experimentally measured relationship between the time shift At 
of chaos synchronization and the time difference of T-T is summarized in Fig. 10.26. 
The open circles are obtained from the open-loop configuration and the solid circles 
are obtained from the closed-loop configuration. It is clear that all the data points 
fall within one straight Une which has a slope of 1.0. Therefore, it is further proven 
that the time shift of chaos synchronization is exactly At = T-T in both regimes, 
where T > T falls in the retarded synchronization regime and T < T falls in the 
anticipated synchronization regime. The time shift of T - T between the synchro- 
nized chaotic waveforms remains the same in both the open-loop and the closed-loop 
configurations. Therefore, the existence of two regimes of anticipated and retarded 
synchronization is general in the optoelectronic feedback system with unidirectional 
coupling. 
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Fig. 10.25. Time series of the synchronized chaotic outputs from the transmitter 
laser (upper trace) and the receiver laser (lower trace) with optoelectronic feedback 
at c = 0.8. (a) Synchronization with no retardation with T - T = 0.0 ns. (b) 
Retarded synchronization with T -r = +4.0 ns. (c) Anticipated synchronization 
with T - r =-4.0 ns [36]. 

Depending on the difference between T and T, the two lasers fall into either 
the anticipated or the retarded synchronization regime. The two regimes have the 
same stability of chaos synchronization in the presence of small perturbations of 
noise and parameter mismatches. The time shift of chaos synchronization is demon- 
strated to he At = T -T in both regimes, which agrees with the theoretical ex- 
pectation [40, 41, 42, 43]. The time shift of T - r is also a proof of true chaos 
synchronization that is different from other phenomena such as modulation, ampli- 
fication, injection locking, and driven oscillation, all of which have a different time 
shift related to only T [44, 45]. This point is already demonstrated by the exper- 
imentally observed difference seen in Fig. 10.22 in the time delays for true chaos 
synchronization and chaotic driven oscillation of an optical feedback system that 
is discussed in the preceeding subsection. Anticipated synchronization and retarded 
synchronization are unified phenomena under the general concept of chaos synchro- 
nization with time shift in nonlinear dynamical systems with delayed feedback. 
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Fig. 10.26. The time shift of chaos synchronization At vs. the time difference of 
T-r in the synchronization experiment for the optoelectronic feedback system.. The 
open circles are from the open-loop configuration and the solid circles are from the 
closed-loop configuration [36]. 

10.7 Synchronization 
in the Presence of Message Encoding 

In Section 10.6, the issue of chaos synchronization has been investigated in the op- 
tical injection, optical feedback, and optoelectronic feedback systems, respectively. 
As we have seen, in order to achieve high quality of chaos synchronization, it is 
very important to keep the symmetry between the transmitter and the receiver. 
However, in chaotic optical communication systems, the process of message encod- 
ing and decoding can further change the symmetry between the transmitter and 
the receiver [15]. It can either break or maintain the symmetry, depending on the 
configurations of the encoding and decoding schemes. Therefore, it is important to 
investigate chaos synchronization in the presence of message encoding. A chaotic 
optical communication system with optoelectronic feedback is used as an example 
in this investigation. Further details regarding message encoding and decoding for 
this system and for the other two systems are discussed in Chapter 10.8. 

In Fig. 10.27, we compare the symmetry between the transmitter and the re- 
ceiver in a chaotic communication system before message encoding and after mes- 
sage encoding. Three major encoding and decoding schemes, namely chaos shift 
keying (CSK) [46, 47], chaos masking (CMS) [48], and additive chaos modulation 
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(ACM) [49, 35], are compared. Details of these encoding and decoding schemes in 
chaotic optical communication systems are discussed in Chapter 10.8. 

V^r-iV^ 
Vv   V^ 

No Message 

—I k. j>  k^ -*~        CSK 

n_n_ 

Vv v^ ^ 
V^p-,^ Q CMS 

n_n_ 

Vv^   V^ ■■ 
i> V^V-iVl^ ACM 

n_n_ 

Fig. 10.27. Comparison of the symmetry between the transmitter and the receiver 
in a chaotic communication system before message encoding and after message en- 
coding with the CSK, CMS, and the ACM schemes, respectively. 

As is required by the theory of chaos synchronization, the transmitter and the 
receiver have to be identical dynamical systems. Before message encoding, the trans- 
mitter is driven by the feedback signal from the output of the transmitter itself. 
Meanwhile, the receiver is driven by the transmitted signal from the output of the 
transmitter also. Therefore, they are both driven by the same force though with a 
time shift, as is discussed in Section 10.6. Nevertheless, there is a symmetry of the 
driving force to the transmitter and that to the receiver. The system can synchronize 
with high quality in a chaiotic state before message encoding. 

When there is a message encoded through the CSK scheme, the message di- 
rectly modulates a parameter of the transmitter but the corresponding parameter 
of the receiver is not modulated by the same message. As a result, the symmetry 
between the transmitter and the receiver is broken by the encoding process. This 
break of symmetry between the transmitter and the receiver can also be shown by 
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the rate equations in the presence of message encoding. With the CSK schemes, the 
transmitter can be written as 

^ = _^^5T ^ ^^^T ^ 2VS^F7, (10.75) 
at 

rfiV^ ^ J[l + mcsK(t)] N ^ ^yT,^ _ ^)1 _ ^^^T _ ^^T^ (10.76) 
dt ed I J 

y'^{t)= f   dvf{t-v)S'^iv)/So, (10-77) 

where the bias current of the transmitter laser is modulated by the message mcsK {t). 
The receiver, driven by the transmitted signal S'^{t), can be described by 

^ = -y^s"" + r75^ + 2^/S^Ff, (10.78) 
dt 

^ =. 4 [l + ^yTR^^ _ j,^-\ _ ^^^R _ ^^R^ (10.79) 
dt        ed I J 

y™W=r   d7?/™(<-r?)S^(7?)/5o. (10.80) 
J—oo 

As can be seen, there is no current modulation on the receiver laser. The two dy- 
namical systems are not symmetric because of the difference between (10.76) and 
(10.79). The synchronization quality is expected to deteriorate in the presence of 
message encoding with the CSK scheme. 

In the CMS scheme, the message is added on the chaotic waveform after the 
chaotic waveform leaves the transmitter. Thus, the message does not affect the dy- 
namics of the transmitter. However, at the receiver, the driving force is the combined 
signal of the chaotic waveform and the message. Therefore, the symmetry between 
the transmitter and the receiver is also broken by the encoding process. With the 
CMS scheme, the transmitter can be written as 

^ = -7,5^ -1- r75^ + 2V/SO5^F7, (10.81) 
dt 

^==7d[^^^^^^*~^^] "^'^'^-^^^' ^^°-^^^ 
j/T(t)=r   dr,f{t-n)S'{r,)/So. (10.83) 

J -~oo 

The encoding process is conducted after the chaotic output exits the dynamical sys- 
tem, and the transmitted signal to the receiver is S'^{t) + mcMs{t). The receiver, 
driven by this transmitted signal S'^(t) +mcMs(t), can be described by 

^ = _7,5^^-^75^ + 2^/S^F.^ (10.84) 
dt 

drr 
dt 

^ [l + ?2/™(* - T)] - 7BiV^ - 75^, (10.85) 

y'^^{t)= f   dr,/™(f-7y)[5^(77)+mcMs(^)]/5o. (10.86) 

As we can see, the symmetry is also broken due to the difference between (10.83) 
and (10.86). The synchronization quality is expected to deteriorate also with the 
CMS scheme. 
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In the ACM scheme, when the message is sent together with the chaotic waveform 
to the receiver, it is also fed back with the chaotic waveform to drive the transmitter. 
Therefore, both the transmitter and the receiver are driven by the same combined 
signal of the chaotic waveform and the message. The symmetry is maintained be- 
tween the transmitter and the receiver. With the ACM scheme, the encoding process 
is conducted within the feedback loop of the transmitter. Therefore, the transmitter 
is driven by S'^{t) + niACuit), and it can be written as 

^ = _^,5^ + r-yS'' + 2^/Sb5^F,'^, (10.87) 
at 

^ = ^ [l + ^y'^it - r)] - TsJV-^ - 75^ (10.88) 

y^{t)= f   dnfit-r,)[S''{v)+mACM{v)]/So. (10.89) 
J — oo 

The receiver, also driven by the transmitted signal S'^{t) + niACMit), can be de- 
scribed by 

^ = -7,5^ + r^S^ + 2 s/SoS^Ff, (10.90) 
at 

dt 
= ^ [l + $y™(t - r)] - 7sJV^ - ^S"", (10.91) 

y''^{t)= f   d'nS'^{t-rf)[S^{ri) + mACu{ri)]/So. (10.92) 
J — oa 

As we can see, the system is symmetric between the transmitter and the receiver even 
in the presence of message encoding. Therefore, the transmitter and the receiver can 
be mathematically identical only when a message is encoded with the ACM scheme 
and when their parameters are well matched. Thus the system with the ACM en- 
coding scheme has the potential to maintain high quality of chaos synchronization 
even in the presence of message encoding. 

A chaotic optical communication system using semiconductor lasers with opto- 
electronic feedback is investigated in the experiment of chaos synchronization with 
message encoding. High quality of chaos synchronization is achieved in the system 
before any message is encoded. Figures 10.28(a) and (b) show the time series and 
the correlation plot of the outputs from the transmitter and the receiver in this sit- 
uation. In Fig. 10.28(a), the upper trace is from the transmitter and the lower trace 
is from the receiver. The output from the transmitter is a chaotic pulse sequence 
and that from the receiver is an identical chaotic pulse sequence. The synchroniza- 
tion quality is further demonstrated by the correlation plot in Fig. 10.28(b). When 
the receiver synchronizes to the transmitter, the correlation plot shows a straight 
Une along the 45° diagonal. In Fig. 10.28(b), the data points are mainly distributed 
along the 45° diagonal, which indicates good quality of synchronization. 

Figures 10.28(c) and (d) show the synchronization quality after a message is ap- 
pUed with the CSK scheme. Comparing the two time series in Fig. 10.28(c), it is clear 
that the output of the receiver is very different from that of the transmitter. The 
correlation plot further shows that the two chaotic waveforms lose synchronization, 
as is indicated by the widely scattered data points in Fig. 10.28(d). 

Figures 10.28(e) and (f) show the corresponding time series and correlation plot 
of the transmitter and the receiver when a message is encoded through the CMS 
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Fig. 10.28. Comparison of the time series from the transmitter (upper trace) and 
the receiver (lower trace) and their correlation plot, respectively, of the optoelec- 
tronic system for synchronization with and without an encoded message: (a) and 
(b) without the message, (c) and (d) with the message in CSK, (e) and (f) with the 
message in CMS, and (g) and (h) with the message in ACM. 

scheme. In Fig. 10.28(e), the two chaotic waveforms are clearly not identical chaotic 
waveforms. The correlation plot also spreads out over a wide area, as is shown in 
Fig. 10.28(f). Therefore, it is demonstrated that the quality of chaos synchronization 
dramatically deteriorates in the CMS case. 

Figures 10.28(g) and (h) show the time series and the correlation plot after a 
message is encoded with the ACM scheme. The chaotic pulsing waveform from the 
transmitter in Fig. 10.28(g) is a much more comphcated chaotic pulsing waveform 
than that in Fig. 10.28(a), as the message affects the chaotic dynamics also. Nev- 
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ertheless, the receiver still synchronizes with the transmitter, and the output of the 
receiver is an identical chaotic pulsing waveform as that of the transmitter. In the 
correlation plot shown in Fig. 10.28(h), the data points still mainly distribute along 
the 45° diagonal. Comparing Figs. 10.28(b) and (h), it can be seen that some dete- 
rioration of the synchronization quality is also observed in the ACM scheme. This is 
caused by the increase in the complexity of the chaotic waveform generated by the 
transmitter when a pseudorandom message is encoded through the ACM scheme. 
Therefore, the synchronization error and the digitization error are both increased be- 
cause of the more complicated chaotic waveform. Nevertheless, the synchronization 
quaUty is still very good when compared with that in the CSK and the CMS schemes. 

Prom the experimental results, it is shown that the process of message encoding 
and decoding can influence the synchronization quality significantly. For different 
encoding and decoding schemes, the effects can be either to deteriorate or to main- 
tain the synchronization quality. For a chaotic communication system, it is very 
important to study chaos synchronization in the presence of message encoding. 

10.8 Conclusions 

The nonUnear dynamics and chaos synchronization of single-mode semiconductor 
lasers for chaotic optical communications are addressed in this chapter. Basic con- 
cepts and theoretical framework are reviewed. Experimental results are presented to 
demonstrate the fundamental concepts. Numerical computations are employed for 
mapping the dynamical states and for illustrating certain detailed characteristics 
of the chaotic states. The objective is to provide a complete picture of the nonUn- 
ear dynamics and chaos synchronization of the three semiconductor laser systems 
considered in this chapter. 

Single-mode semiconductor lasers are class B lasers that have only two dynamical 
dimensions in soUtary operating conditions. For complex nonlinear dynamics such 
as chaos to be possible for such as a laser, both a certain nonlinear physical mech- 
anism to make the system nonlinear and a certain perturbational force to increase 
the dimension of the system to more than two are required. A semiconductor laser 
gain medium is inherently nonlinear. Such intrinsic nonlinearity is sufficient for a 
single-mode semiconductor laser to exhibit rich nonlinear dynamical characteristics 
if a proper perturbation is applied to sufficiently increase the dimension of the sys- 
tem. Among the many possible schemes for perturbing a single-mode semiconductor 
laser into chaos, we consider in this chapter the three different semiconductor laser 
systems, namely the optical injection system, the optical feedback system, and the 
optoelectronic feedback system, that are of most interest for high-bit-rate chaotic 
optical communications. The dynamics of each of these three systems is determined 
by five intrinsic laser parameters, which are independent of the perturbing force, and 
three operational parameters, which are controllable in operation and two of which 
are determined by the perturbing force. These three systems have very different 
nonUnear dynamics, and their dynamical states have very different characteristics 
as weU. The optical injection system is a nonautonomous system with a fixed di- 
mension; it follows a period-doubUng route to chaos. The optical feedback system 
is a phase-sensitive delayed-feedback autonomous system with a dimension increas- 
ing with the feedback delay time; all three known routes, namely period-doubling, 
quasiperiodicity, and intermittency, to chaos are possible for this system, depending 
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on the laser parameters and the operating condition. The optical feedback system 
is a phase-insensitive delayed-feedback autonomous system with a dimension also 
increasing with the feedback delay time; it follows a quasiperiodicity route to chaos 
with pulsing characteristics. 

The main focus of chaos synchronization discussed in this chapter is identical syn- 
chronization in unidirectionally coupled systems, which is also the primary subject of 
study on synchronization for chaotic communications. The three systems considered 
in this chapter have different characteristics regarding chaos synchronization. For op- 
tical injection and optical feedback systems, the frequency, phase, and Amplitude of 
the optical fields of both transmitter and receiver lasers are all locked in synchronism 
when synchronization is accomplished because both phase and amplitude of the laser 
field participate in the dynamics of these systems. Besides the complete synchroniza- 
tion of the entire optical field, the optical injection system exhibits synchronization 
sensitivity to the optical phase difference between the injection field and the trans- 
mitter laser field. The optical feedback system exhibits phase sensitivity only when 
the receiver has a closed-loop configuration. For the optoelectronic feedback system, 
chaos synchronization does not involve the locking of the optical frequency or the 
synchronization of the optical phase because the phase of the laser field does not par- 
ticipate in the nonUnear dynamics of this system. Synchronization of this system is 
not phase sensitive. For both optical feedback and optoelectronic feedback systems, 
where the transmitter is configured with a delayed feedback loop, anticipated and re- 
tarded synchronization can be observed as the difference between the feedback delay 
time and the propagation time from the transmitter to the receiver laser is varied. 

All of these three systems also exhibit multiple synchronous scenarios regardless 
of the differences in their nonlinear dynamics. Besides the true chaos synchroniza- 
tion described by the theory of identical chaos synchronization, one or two other 
synchronous phenomena are observed for each system under different operating con- 
ditions. These other synchronous phenomena include chaotic driven oscillation and 
chaotic modulation. They have different signatures compared to true identical chaos 
synchronization. 

The transmitted signal of any communication system in operation has to be 
encoded with a message, which is decoded at the received end. For a synchro- 
nized chaotic communication system, the effect of the message encoding process 
on the synchronization between the receiver and the transmitter is an impor- 
tant issue that cannot be ignored. The impact of the message encoding pro- 
cess on the synchronization quality depends on many factors, including the mes- 
sage encoding scheme, the system configuration, and the bit rate and form of 
the message. For identical chaos synchronization, one fundamental requirement 
for maintaining high synchronization quality while a message is encoded is to 
use an encoding scheme that maintains the symmetry between the transmit- 
ter and the receiver. For this reason, an encoding scheme such as ACM that 
does not break the symmetry between the transmitter and the receiver is su- 
perior to one such as CSK or CMS that breaks the symmetry. It is shown in 
this chapter that high-quaUty synchronization can be maintained, with an added 
benefit of increasing the complexity of the chaotic waveform, when a semicon- 
ductor laser system is encoded with random message bits through the ACM 
scheme. 
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Summary. Chaotic optical communication is a novel communication scheme which 
utiUzes optical chaotic waveform to transmit messages at a high bit rate. Its potential 
applications include secure communications and spread-spectrum communications. 
In a chaotic optical communication system, a nonUnear dynamical system is used 
to generate the optical chaotic waveform for message transmission. Messages are 
encoded through chaos encryption where the messages are mixed with the chaotic 
waveform. Message recovery is achieved by comparing the received signal with a re- 
produced chaotic waveform which synchronizes with the chaotic waveform from the 
transmitter. Details are discussed in this chapter regarding each of the above basic 
issues. Furthermore, we also review the experiment of chaotic optical communication 
at 2.5 Gb/s, which has the highest bit rate in any chaotic communication systems 
ever reported in the literature. This system uses semiconductor lasers with delayed 
optoelectronic feedback to generate chaotic pulses. Three major encoding and decod- 
ing schemes, namely chaos masking, chaos shift keying, and chaos modulation, are 
implemented and compared in this 2.5 Gb/s chaotic optical communication system. 
The chaos modulation scheme is found to have the best performance. To investigate 
the potential appUcations of chaotic optical communications at an even higher bit 
rate, numerical simulations are carried out on chaotic optical communication sys- 
tems operating at 10 Gb/s. In this numerical study, three different systems using 
semiconductor lasers with optical injection, optical feedback, or optoelectronic feed- 
back, respectively are investigated. It is shown that chaotic optical communication 
at 10 Gb/s is feasible with high-speed semiconductor lasers. 

11.1 Introduction 

Chaotic communication is a novel communication scheme which has attracted much 
interest in the last decade [1, 2] because of its potential appUcations in secure com- 
munications and in spread-spectrum communications. This scheme is based on the 
transmission of messages encoded on chaotic waveforms generated by nonlinear dy- 
namical systems. Chaotic optical communication uses fast chaotic optical waveforms 
to transmit messages at high bit rates. 
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Fig. 11.1. Schematics of (a) and (b) two different conventional optical communi- 
cation systems and (c) chaotic optical communication system. 

In order to explain how a chaotic optical communication system works, we com- 
pare it with conventional optical communication systems. In conventional optical 
communication systems, the optical carrier either has a constant optical intensity or 
a series of optical pulses with a constant peak value as indicated in Figs. 11.1(a) and 
(b), respectively. When a message is intensity modulated on the optical carrier, the 
optical intensity takes on two distinct levels that respectively represent a "1" bit or 
a "0" bit being transmitted. Message recovery is achieved by detecting the optical 
intensity and comparing it with an appropriate decision threshold. In contrast, in 
a chaotic optical communication system, the intensity of the optical carrier does 
not maintain a constant level but fluctuates chaotically, as is shown in Fig. 11.1(c). 
Messages can be encoded by modulating a certain parameter of the chaotic wave- 
form such as the intensity. For example, the intensity of the chaotic waveform is not 
modified when a "1" bit is transmitted, but the intensity is lowered by a certain 
ratio when a "0" bit is transmitted. However, because the intensity of the chaotic 
waveform fluctuates originally, the message cannot be directly detected by simply 
measuring the intensity of the received chaotic waveform. In order to decode the 
message in a chaotic communication system, a repUca of the original chaotic wave- 
form is needed at the receiver. For the example shown in Fig. 11.1(c), the message 
can be recovered by dividing the received chaotic waveform with the reproduced 
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chaotic waveform at the receiver. The rephcation of the chaotic waveform can be 
achieved by chaos synchronization, which is discussed in Chapter 9.6. 

Chaotic waveforms have some unique characteristics such as noise-hke time se- 
ries and broadband spectrum [3]. Figure 11.2 shows the time series and the power 
spectrum of a chaotic pulsing waveform generated by a semiconductor laser with 
optoelectronic feedback [4]. As we can see, the pulse intensity of the chaotic wave- 
form is very noise-like and fluctuates chaotically. Based on this property, chaotic 
communication can be applied to secure communications [5], where messages can be 
hidden within the chaotic fluctuations of the waveforms. An eavesdropper who can 
only record the modulated chaotic waveform cannot recover the messages without 
the knowledge of the original chaotic waveform. Another important characteristic 
of chaotic waveform is its broadband spectrum, as is seen in the power spectrum 
shown in Fig. 11.2. The power of a chaotic waveform is distributed over a broad spec- 
tral range. Therefore, chaotic communications potentially can have less interference 
among different communication channels within the same transmission media. The 
inherent properties of chaotic waveforms also hint at the potential apphcation in 
multiple-access networks. Other potential benefits of chaotic communications in- 
clude efficient use of the bandwidth of a communication channel [6], utiUzation of 
the intrinsic nonlinearities in communication devices, large-signal modulation for 
efficient use of the carrier power, reduced number of components in a system, and 
security of communication. 

10 20 
Time (ns) 

30       "'"0     0.5     1      1.5     2     2.5     3 
Frequency (GHz) 

Fig. 11.2. Time series and power spectrum of a chaotic pulsing waveform. 

A brief comparison between conventional and chaotic communications is given 
in Table 11.1. As can be seen, compared to the matured technology of conventional 
communications, chaotic communication is an emerging field. However, motivated 
by the potential benefits from the broadband and noise-hke chaotic carrier, chaotic 
communications have attracted much interest recently, and their performances are 
being improved rapidly. We expect to see chaotic communications becoming an 
important supplement to conventional communications, with unique features that 
cannot be accomplished by conventional communications along. The implementation 
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of nonlinear systems in chaotic optical communications opens up many possibilities 
that cannot be achieved with linear systems along. 

Table 11.1. Conventional versus chaotic communications. 

Conventional Chaotic 

History Over  100  years  old;  matured 
technology 

Less than 10 years old; emerging 
technology 

Industrial 
base 

Heart of world-wide information 
technology 

None existing 

Transmission 
bandwidth 

Transmitting    at    information 
bandwidth   (BW)   or  at  wide 
BW (e.g., spread spectrum) 

Transmitting at wide BW 

Carrier wave- 
form 

CW or pulse Chaotic waveform or pulse 

Bit rate 10 Gb/s, 40 Gb/s 7 2.5 Gb/s 8 

Bit error rate lO-'^ [7] 10"^ at 2.5 Gb/s [8], lO"" at 
126 Mb/s [9] 

Chaotic communications have been investigated using electric circuits [10], which 
are generally bandwidth-Umited to the kilohertz region. To achieve fast chaotic com- 
munication, laser systems are of great interest because of their ability to carry high- 
bit-rate messages in the gigahertz region. Different laser systems have been investi- 
gated for chaotic optical communications. Table 11.2 summarizes the current status 
of chaotic optical communications. Both semiconductor lasers [11]-[16] and fiber ring 
lasers [17]-[19] have been used successfully in high-bit-rate chaotic optical communi- 
cations. Semiconductor lasers with optical injection [11], optical feedback [12]-[13], 
or optoelectronic feedback [14]-[16] have been investigated to generate fast chaotic 
waveforms. The chaotic fluctuations can be in optical intensity, wavelength, or po- 
larization. FVom the Uterature, the highest bit rate ever achieved in chaotic optical 
communications is 2.5 Gb/s using semiconductor lasers with optoelectronic feedback. 
Experimental results on this transmission of 2.5 Gb/s chaotic optical communication 
are reviewed in detail in Section 11.3. 

Prom the above discussions, it is seen that the field of chaotic optical communi- 
cations is growing fast because of the advantages brought by chaotic waveforms and 
nonlinear dynamical systems. In this chapter, we give an introduction to chaotic op- 
tical communications and review our research results on high-bit-rate chaotic optical 
communications. The arrangement of this chapter is as follows. The configurations 
and the general issues of a chaotic optical communication system is discussed in 
Section 11.2. The experiment on chaotic optical communication at 2.5 Gb/s [8] is 
described in Section 11.3. The effect of message encoding and decoding on the perfor- 
mances of chaotic optical communication systems is discussed in Section 11.4. Sim- 
ulations on chaotic optical communications at 10 Gb/s have been investigated [20], 
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Table 11.2. Status of chaotic optical communications. 

System Chaos Chaos Bandwidth Bit rate Ref. 

Optical injection Intensity 3-10 GHz 11 

Optical feedback Intensity 3 GHz 1.5 GHz 12]-13] 

Optoelectronic 
feedback 

Intensity 3 GHz 2.5 Gb/s 8, 14, 15] 
Wavelength kHz 4 kHz 16 

Fiber ring laser Intensity 1.5 GHz 250Mb/s, IGHz 17, 18 
Polaxization 1.5 GHz 80 Mb/s 19 

and the results are summarized in Section 11.5. Finally, conclusions and discussions 
on future research are included in Section 11.6. 

11.2 General Issues on Chaotic Optical Communications 

The schematic block diagram of a synchronized chaotic optical communication sys- 
tem has been shown in Fig. 11.1(c). Basically, on the transmitter side, a chaotic 
communication system includes a chaos generator that generates a chaotic wave- 
form, and a chaos encoding scheme that encodes messages on the chaotic waveform. 
On the receiver side, an identical chaos generator is required for chaotic communi- 
cations based on chaos synchronization. The decoding scheme is the inverse of the 
encoding process. Each of these important parts of a chaotic optical communication 
system are discussed in the following subsections. 

11.2.1 Generation of Chaotic Waveforms 

As is shown in Fig. 11.1(c), in a chaotic optical communication system, a chaotic 
waveform is used to encode messages for transmission. Therefore, to configure a 
chaotic optical communication system, we first need a chaos generator to generate 
fast chaotic optical waveforms. The chaos generator is basically a nonlinear dynami- 
cal system. To generate a chaotic optical waveform, we can use a semiconductor laser 
system or any other optical dynamical system. Since semiconductor lasers are the 
choice of light sources for optical communications, we focus on using semiconductor 
lasers in this chapter for chaotic optical communications. Semiconductor lasers with 
external perturbations such as optical injection, optical feedback, or optoelectronic 
feedback have been found to be able to generate fast chaotic optical waveforms [11]- 
[16]. Details of the nonlinear dynamics of semiconductor lasers and the character- 
istics of the chaotic states generated by such semiconductor lasers are covered in 
Chapter 9.6. Semiconductor lasers can generate either continuous or pulsed chaotic 
optical waveforms that vary on a subnanosecond time scale [21]. Such chaotic optical 
waveforms are especially suitable for high-bit-rate chaotic optical communications. 

11.2.2 Synchronization of Chaotic Optical Communications 

In a chaotic communication system, the received chaotic waveform carries the infor- 
mation about the encoded messages. However, the messages are encrypted with the 
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Fig. 11.3. Block diagram of a synchronized chaotic communication system illus- 
trating the process of chaos synchronization and message recovery. 

fluctuations of the chaotic waveform. In order to recovery the messages, a replica of 
the original chaotic waveform before message encoding is required on the receiver 
side. This replicating process needs an identical chaos generator on the receiver 
side that is synchronized to the chaos generator on the transmitter side [22, 23]. 
Message recovery is then achieved by comparing the received signal with the re- 
produced chaotic waveform. The quality of chaos synchronization is very important 
for the performance of a synchronized chaotic communication system. Although 
chaotic communication systems that do not require chaos synchronization have also 
been proposed, most of the chaotic communication systems studied so far need chaos 
synchronization. Therefore, we will focus on chaotic communications based on chaos 
synchronization. 

Figure 11.3 shows how chaos synchronization and message recovery can be 
achieved in a chaotic communication system. A nonUnear dynamical system, whose 
system function is denoted by G'^, is used to generate a chaotic output indicated 
by S'^{t). Message encoding is achieved through additive chaos modulation where 
the message is added on the chaotic waveform as S'^{t) + m{t). The added signal, 
S'^{t) -\-m{t), is then spUt into two paths, where one is fed back to drive the G'^ dy- 
namical system, and the other is transmitted to the receiver. Therefore, the output 
from the transmitter can be written as S'^it) = G'^[S'^{t) + m{t)]. On the receiver 
side, an identical nonlinear system, denoted by G^, is needed for chaos synchroniza- 
tion. The driving signal to G^ is the received signal, which is S'^{t) + m{t). The 
output of G^ can be written as S'^it) = G^[5'^(*) -|-m(t)]. Comparing the expres- 
sions of S'^(t) and S^{t), we can see that they can be synchronized if G'^ and G^ are 
identical nonlinear dynamical functions with identical parameters. Finally, message 
recovery is achieved by subtracting S^{t) from the received signal S'^{t) +m{t). The 
recovered message is S'^(t) - S^{t) + m{t), which contains the original message plus 
some residual synchronization errors in S'^{t) - S^{i). For simpUcity, the time delay 
of signal propagation due to its finite speed is not considered in this analysis. As 
we will see later, even with the consideration of the time delay in a real system, the 
synchronization process is still the same except with a time shift in S'^{t) and S (t). 

In order to achieve chaos synchronization, the receiver dynamical system needs 
to be identical to the transmitter dynamical system. The receiver is further coupled 
to the transmitter through the transmission path. Both the transmitter and the re- 
ceiver dynamical systems need to be driven by the same force. When the parameters 
of the receiver are respectively identical to those of the transmitter and the coupling 



Title Suppressed Due to Excessive Length       325 

strength is strong enough, the receiver can synchronize to the transmitter in all 
dynamical states including the chaotic state. Therefore, the output of the receiver 
can reproduce the original chaotic waveform from the transmitter. Details of chaos 
synchronization in semiconductor lasers are discussed in Chapter 9.6. 

However, as the receiver nonhnear dynamical system may not have exactly the 
same parameters as those of the transmitter dynamical system, synchronization of 
the two chaotic waveforms generated by the transmitter and the receiver is not 
perfect but has errors. These synchronization errors cause errors in the recovery of 
the message because the message is recovered by comparing the two chaotic wave- 
forms. In a chaotic communication system based on synchronization, the system 
performance largely depends on the quality of chaos synchronization. 

11.2.3 Encoding and Decoding Schemes 

In Fig. 11.1(c), after the chaos generator, an encoding scheme is required to encode 
messages on the chaotic waveform. Many chaotic encoding and decoding schemes 
have been investigated. Due to the special requirement on chaos synchronization in 
chaotic optical communication systems, the encoding and decoding schemes are cat- 
egorized differently from those used in conventional optical communication systems. 
They can be classified into three major categories: chaos masking [24], chaos shift 
keying [25], and chaos modulation [10, 26, 27], shown in Figs. 11.4 (a), (b), and (c), 
respectively. 

In the chaos masking scheme, a message is encoded onto the chaotic waveform 
after the chaotic waveform exits the dynamical system of the transmitter. There- 
fore, the chaotic transmitter is independent of the message and is only driven by 
the dynamics of the transmitter itself, whereas the receiver is driven not only by the 
chaotic waveform from the transmitter but also by the encoded message. Because 
of this difference in the driving forces, the receiver cannot be perfectly synchronized 
to the transmitter in this system. Therefore, the message signal is required to be 
small compared to the chaotic waveform in order to keep the synchronization errors 
small [22, 28]. 

In chaos shift keying, a certain parameter of the transmitter is modulated by the 
binary bits of the message. As a result, the binary bits "1" and "0" are mapped into 
two different chaotic states. The receiver can detect the message by tracking one of 
the chaotic states as either synchronized or unsynchronized, with low or high levels 
of synchronization errors, respectively. When the transmitter is switched between 
the two chaotic states, the receiver cannot synchronize with the transmitter all the 
time. The bit rate of the modulating message is hmited for a system using chaos 
shift keying because it is not steadily synchronized. 

Chaos modulation is the scheme that has been used to explain the importance of 
chaos synchronization in Fig. 11.3. Chaos modulation can overcome the limitations 
on the amplitude and the bit rate of the message in the other two encoding schemes 
discussed above. In chaos modulation, when a message is encoded onto the chaotic 
waveform of the transmitter and sent to the receiver, it is also injected into the 
dynamics of the transmitter. Different from the chaos masking scheme, now both 
the transmitter and the receiver are driven by the same force which includes the 
message. Consequently, when their parameters are all matched, the transmitter and 
the receiver potentially can perfectly synchronize with each other all the time in 
the presence of the variations of the message [10, 22, 28]. Prom the viewpoint of 
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Fig. 11.4. Schematics of the (a) chaos maslcing, (b) chaos shift keying, and (c) 
chaos modulation schemes in a chaotic communication system. 

synchronization, the message can have a large amplitude and a very high bit rate 
while still allowing the system to maintain perfect synchronization. 

In both the chaos masking and the chaos modulation schemes, the message can 
also be encoded on the chaotic carrier through other operations, such as multiplica- 
tion. The decoding is achieved by comparing the received signal with the reproduced 
chaotic waveform. This decoding can be either subtraction or division, depending on 
whether the encoding process is addition or multipUcation. Depending on the appli- 
cations of chaotic optical communications, different encoding and decoding schemes 
can be selected. For good quality of chaotic communication, minimization of syn- 
chronization errors is very important. 

11.2.4 Channel Noise and Bit-Error Rate 

In a chaotic communication system, once chaos synchronization is achieved between 
the transmitter and the receiver, message encoding and decoding can be imple- 
mented. Since the additive white Gaussian noise (AWGN) channel constitutes the 
most basic component of a communication Unk, the investigation of the system per- 
formance under AWGN is of great importance. Different from that of a conventional 
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communication system, the performance of a chaotic communication system strongly 
depends on the quality of synchronization. Channel noise does not only contaminate 
the signal in the process of transmission but also seriously influences the synchro- 
nization quality of the system by generating synchronization errors. Such synchro- 
nization errors are generated because the identity of the driving forces to both the 
transmitter and the receiver is corrupted by the presence of channel noise. Therefore, 
the system performance strongly depends on the robustness of synchronization un- 
der the influence of channel noise, which can be very different for different systems as 
we will show later in our simulation of three chaotic optical communication systems. 

Bit-error rate (BER) is a standard performance measurement of a communica- 
tion system. It is often measured in a form as log BER versus signal to noise ratio 
(SNR). In a chaotic communication system, while additional energy has to be used 
to transmit the chaotic carrier waveform, the information is only included in the en- 
ergy of the message. Therefore, it is common to treat the chaotic waveform as carrier 
and include only the message energy in the calculation of SNR. When the message 
is disturbed by noise, the signal levels designated to bits "1" and "0" spread out and 
overlap. A bit error is detected when a "1" bit is mistaken as a "0" bit, or vice versa. 
As is discussed above, the bit errors caused by the channel noise come from both the 
contamination of the message by the channel noise during transmission and the syn- 
chronization errors generated by the injection of the channel noise into the receiver. 

For chaotic communications, these issues related to chaos generation, encod- 
ing and decoding schemes, and chaos synchronization are very important. They are 
addressed both experimentally and numerically in the following sections. 

11.3 Experiment 
of Chaotic Optical Communication at 2.5 Gb/s 

In this section, we review the optical communication experiment using a fast chaotic 
pulsing semiconductor laser system with delayed optoelectronic feedback [8]. The 
encoding and decoding scheme used in the experiments is basically chaos modula- 
tion discussed above. The chaos modulation scheme can be either additive chaos 
modulation or multiplicative chaos modulation, depending on whether the message 
is encoded through adding or multiplying the message onto the chaotic waveform. 
In this experiment, the message is encoded through incoherent addition with the 
chaotic waveform. 

The schematic experimental setup of the chaotic communication system using 
chaotically pulsing semiconductor lasers is shown in Fig. 11.5. In this setup, the 
transmitter laser has an optoelectronic feedback loop which drives the laser into 
chaotic pulsing when the feedback delay time r is carefully adjusted [4]. The re- 
ceiver laser operates in an open-loop configuration and is driven by the signal from 
the transmitter. Message m{t) is encoded by means of incoherent addition onto 
the output of the transmitter laser as S'^{t) -t- m{t). When m{t) is encoded onto 
S'^{t) and the combined signal is sent to the receiver laser, it is also fed back to the 
transmitter laser. Therefore, the transmitter laser is driven by S'^{t- T) -\- m{t - r) 
because of the delay time in the feedback loop, and the receiver laser is driven by 
S^(f — T) + m{t — T) because of the time delay in transmission, where T is the 
transmission time. With parameters matched between the transmitter and the re- 
ceiver lasers, the receiver is synchronized to the transmitter with a time shift T — r. 
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Fig. 11.5. Schematic setup of the chaotic communication system with chaotically 
pulsing semiconductor lasers for encoding and decoding messages through additive 
chaos modulation. LD: Laser Diode; PD: Photodetector; A: Amplifier. 

Therefore, the receiver laser output is S'^{t) = S'^{t -T-^r), and the message is 
recovered as S''^(f - T + r) + m(i - T + r) - S\t) = m(t - T + r). 

In the experiment, the transmitter and the receiver lasers are InGaAsP/InP 
single-mode DFB lasers emitting at the same wavelength of 1.299 /im. These two 
lasers are carefully chosen from the same batch with the closest characteristics. In the 
experiment, both lasers are temperature stabilized at 21.00 °C. The photodetectors 
are InGaAs photodetectors with a 6-GHz bandwidth. The ampUfiers are Avantek 
SSF86 amplifiers with a 3-dB pass band of 0.4 to 3 GHz. The chaotic waveforms are 
measured with a Tektronix TDS 694C digitizing real-time oscilloscope with a 3-GHz 
bandwidth and a 1 x 10^° Samples/s sampling rate. The 2.5 Gb/s pseudorandom 
digital bits are generated by an HP 70843A pseudorandom pattern generator. 

With the transmitter and the receiver steadily synchronized [14], recovery of 
message utilizing the chaotic pulse system is investigated. Figure 11.6 shows the re- 
covery of a 500 MHz pulse stream. This pulse stream is generated by an HP 33004A 
comb generator. The top trace is the received signal, S'^{t - T-I- T) -}- m(f - T -t- T), 

measured at PD2 in Fig. 11.5 and shifted by a time T. The second trace, measured 
at PD3, is the local receiver laser output, which synchronizes with and dupUcates 
the chaotic pulse output of the transmitter laser as S^{t) = S'^{t-T+T). The time 
shift between the transmitter and the receiver has been matched in the oscilloscope. 
Shown in the third trace, signal recovery is achieved by subtracting the receiver laser 
output (the second trace) from the received signal (the top trace). A decision thresh- 
old can be set at the position of the dashed line. The recovered signal shows very 
good quality of decoding compared with the original signal, which is also shown in 
Fig. 11.6 in the bottom trace as a reference. Limited by the size of the record length 
of the digitizing sampling oscilloscope, which is 120,000 samples for TDS 6940, we 
can only record about 6000 pulses in one shot. Within the 6000 pulses, no error bit 
is been detected, indicating a bit-error rate less than 1.7 x 10~*. 

To show the potential communication capacity of this chaotic pulse system, a 
pseudorandom sequence at a bit rate of 2.5 Gb/s is transmitted [8]. Figure 11.7 
shows the results of message recovery, where each time series has the same meaning 
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Fig. 11.6. Transmission of a pulse stream at 500 MHz repetition rate in a chaotic 
communication system using semiconductor lasers with optoelectronic feedback. 
Time series of received signal (top), receiver laser output (second), recovered signal 
(third), and encoded signal (bottom) [8]. 

as that of the corresponding trace in Fig. 11.6. The 2.5 Gb/s NRZ message is gen- 
erated by an HP 70843A pseudorandom pattern generator. Even though there are 
some fluctuations in the recovered time series, by setting a decision threshold at the 
position of the dashed hne, it is clear that the message can be successfully recovered 
at this high bit rate. Thresholding is an advantage of systems transmitting messages 
in digital bits, compared with analog messages. The performance can also be largely 
improved by modifying the shape and the format of the bit sequence to better fit the 
characteristics of the chaotic pulse carrier. Adding a low pass filter at the receiver 
end can smooth out the fast fluctuating noise and further improve the system per- 
formance. To our knowledge, this system of transmitting a message at 2.5 Gb/s has 
the highest bit rate in any chaotic communication systems reported in the litera- 
ture. This bit rate fits the standard of commercial digital OC-48 system. Therefore, 
the experiment has the significance in proving that chaotic communications can be 
implemented with commercial standards. 

The eye diagram of the recovered message transmitted through this chaotic opti- 
cal communication system is shown in Fig. 11.8(a). A clear eye opening is obtained, 
which indicates the good quality of message recovery. As a reference. Fig. 11.8(b) 
also shows the eye diagram obtained with the same setup but with the semiconduc- 
tor laser operated in a non-chaotic stable state. As can be seen, a large amount of 
errors already exists in the non-chaotic system because of the Umited modulation 
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Fig. 11.7. Transmission of a pseudorandom NRZ bit sequence at a bit rate of 
2.5 Gb/s in a chaotic communication system using semiconductor lasers with op- 
toelectronic feedback. Each time series has the same meaning as that of the corre- 
sponding trace in Fig. 11.6 [8]. 

bandwidth of the semiconductor laser and the large noise from the electronic com- 
ponents, which are not intentionally optimized for this purpose. These errors can 
be reduced by using semiconductor lasers that have larger modulation bandwidths 
and electronic components that have much less noise. The deterioration of the eye 
opening between Figs. 11.8(a) and (b) is the real deterioration that is caused by the 
introduction of a chaotic carrier. This deterioration can be improved by reducing 
the synchronization errors between the transmitter and the receiver. 

High-bit-rate digital messages at up to a bit rate of 2.5 Gb/s have been suc- 
cessfully transmitted [8]. The chaos modulation scheme is demonstrated to have 
the advantage in maintaining high quality synchronization through all the time of 
message transmission. The communication quality and capacity are both shown to 
be very high with this chaotically pulsing semiconductor laser system, which indi- 
cates that chaotic communication with a bit rate of several Gb/s is feasible with 
semiconductor lasers. 
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Fig. 11.8. (a) Experimentally measured eye diagram of decoded 2.5 Gb/s NRZ 
messages in a chaotic optical communication system using semiconductor lasers 
with optoelectronic feedback, (b) Reference eye diagram using the same setup but 
with the semiconductor laser operated in a non-chaotic stable state. 

11.4 Comparison 
of Different Encoding and Decoding Schemes 

Many systems based on either semiconductor lasers [11]-[16] or fiber ring lasers [17]- 
[19] have been proposed and studied for chaotic optical communications. Several 
encoding and decoding schemes have been considered and demonstrated for chaotic 
communications. The most important ones include chaos shift keying (CSK), chaos 
masking (CMS), and chaos modulation. For chaos modulation, possible encoding 
and decoding schemes include additive chaos modulation (ACM) and multiplica- 
tive chaos modulation (MCM). Because of the differences in these message encod- 
ing/decoding schemes, they have very different effects on the system performance 
in regard to the dynamics, synchronization, and communication performances. In 
this section, we review experimental demonstrations of the effects of message en- 
coding and decoding on the chaotic dynamics, chaos synchronization, and chaotic 
communication performances of a chaotic optical communication system. 

11.4.1 Experimental Setup 

Figure 11.9 shows the schematic experimental setup of our chaotic optical commu- 
nication system, which is similar to the setup in Fig. 11.5. Three major encoding 
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Fig. 11.9. Schematic experimental setup of the chaotic optical communication sys- 
tem using semiconductor lasers with optoelectronic feedback. Also shown axe the 
message encoding and decoding schemes: CSK, chaos shift keying; CMS, chaos mask- 
ing; ACM, additive chaos modulation. The solid lines indicate the electronic paths. 
The dashed lines indicate the optical paths. LD: laser diode; PD: photodetector; A: 
amplifier; Tn(f): message. 

and decoding schemes, namely CSK, CMS, and ACM are investigated and compared 
because they are all additive in nature on the transmitter side and are subtractive in 
nature on the receiver side. The message that is encoded and decoded in the system 
is a sequence of pseudorandom digital bits at a bit rate of 2.5 Gb/s. This bit rate 
matches the OC-48 standard of optical communications. 

In the CSK scheme, the digital message TncsK(*) directly modulates the cur- 
rent injected to the transmitter laser. Thus the current injected to the transmitter 
laser switches between two distinct levels depending on whether a "0" bit or a "1" 
bit is transmitted. Meanwhile, the receiver laser is biased at a fixed current level 
that is equivalent to the current level of the transmitter laser at which a "0" bit is 
transmitted. Thus the two semiconductor lasers are biased at the same current level 
when a "0" bit is transmitted, but they are biased at different levels when a "1" 
bit is transmitted. By measuring the synchronization errors between the transmitter 
and the receiver, the message can be recovered. A low level of synchronization error 
corresponds to a "0" bit, and a high level of synchronization error corresponds to 
a "1" bit. The synchronization errors are measured by the difference between the 
outputs firom PD2 and PD3 in Fig. 11.9. 

In the CMS scheme, the message mcMs(0 is added on the chaotic waveform 
after it leaves the optoelectronic feedback loop of the transmitter on its way to the 
receiver. Thus the message does not affect the feedback loop of the transmitter, 
and the chaotic waveform is solely generated by the optoelectronic feedback loop 
of the transmitter. At the receiver, the output from PD2 is the combined signal of 
the chaotic waveform and the message, while the output firom PD3 is the repro- 
duced chaotic waveform that is regenerated by the receiver laser. By subtraction, 
the receiver can recover the message. 

In the ACM scheme, the message mACM(*) is added on the chaotic waveform 
within the optoelectronic feedback loop of the transmitter. When the message is sent 
together with the chaotic waveform to the receiver, it is also sent to drive the trans- 
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mitter laser through the optoelectronic feedback loop. Therefore, the dynamics of the 
transmitter laser is also affected by the encoded message. At the receiver, message 
recovery is achieved through the same process as that in the CMS scheme. However, 
because the message is sent to drive both the transmitter and the receiver lasers in 
the ACM scheme but it is not sent to drive the transmitter laser in the CMS scheme, 
the effects of message encoding and decoding are very different in these two schemes. 

11.4.2 Effects on Chaotic Dynamics 

When there is no message encoded, the chaotic waveform is solely generated by 
the transmitter laser with the optoelectronic feedback. Details of the nonlinear dy- 
namics and the characteristics of the chaotic states are discussed in Chapter 9.6. 
Figures 11.10(a)-(c) show the time series, power spectrum, and phase portrait, re- 
spectively, of a typical chaotic pulsing waveform that is generated by the transmitter 
laser without any encoded message. 

In order to have a fair comparison Eimong the different encoding and decoding 
schemes, we defined a normalized message strength, m, as follows 

_ average intensity of message /.... .,> 
average intensity of chaotic waveform' 

In this definition, the average intensity of the message is measured in the trans- 
mission channel after PD2 when no chaotic waveform is transmitted. Similarly, the 
average intensity of the chaotic waveform is measured at the same position when 
no message is transmitted. In Figs. 11.10(d)-(l), m is set to be 0.7 for all the three 
schemes when a message is encoded. 

Figures 11.10(d)-(f) show the corresponding characteristics of the chaotic wave- 
form after a pseudorandom message is encoded through the CSK scheme in the 
chaotic optical communication system. In Fig. 11.10(d), the time series shows a 
train of pulses with some additional irregular fluctuates in both the pulse intensity 
and the pulse interval. In Fig. 11.10(e), the background of the power spectrum in- 
creases to a much higher level than that in Fig. 11.10(b). At the same time, the spiky 
characteristic of the spectrum in Fig. 11.10(b) is much suppressed in Fig. 11.10(e). 
Both the increase of the background and the suppression of the spikes in the spec- 
trum are evidences of increased complexity of the chaotic waveform. Furthermore, 
from the phase portrait shown in Fig. 11.10(f), a very scattered distribution of the 
data points is observed. Therefore, from the time series, the power spectrum, and 
the phase portrait, the complexity of the chaotic state is shown to be increased after 
a pseudorandom message is encoded through the CSK scheme. 

In the CMS scheme, the message is added on the chaotic waveform after the 
waveform leaves the optoelectronic feedback loop, as can be seen from the setup 
in Fig. 11.9. Therefore, the message is not injected into the dynamics that gener- 
ates the chaotic waveform of the transmitter. No increase in the complexity of the 
chaotic waveform is expected in the case of CMS. Figures 11.10(g)-(i) show the time 
series, the power spectrum, and the phase portrait, respectively, after a pseudoran- 
dom message is encoded through the CMS scheme. As we can see, Figs. 11.10(g)-(i) 
are very similar to the corresponding ones in Figs. 11.10(a)-(c), which indicates that 
indeed the characteristics of the chaotic state is not changed by the encoding process 
in the CMS scheme. 
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Fig. 11.10. Time series (first column), power spectra (second column), and phase 
portraits (third column), respectively, of the chaotic waveforms in a chaotic optical 
communication system with optoelectronic feedback obtained with and without an 
encoded message: (a)-(c) without the message, (d)-(f) with the message in CSK, (g)- 
(i) with the message in CMS, and (j)-(l) with the message in ACM. The normalized 
message strength is m = 0.7. 

Different from the CMS scheme, in the ACM scheme, when the message is added 
on the chaotic waveform and is sent to the receiver, the message is also sent to the 
optoelectronic feedback loop and further drives the dynamics of the transmitter 
laser. Figures 11.10(j)-(l) show the characteristics of the chaotic waveform after a 
message is encoded in this scheme. As we can see, the time series in Fig. II.IOQ) is 
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more irregular than that in Fig. 11.10(a). The power spectrum in Fig. ll.lO(k) has a 
much higher background and much less spiky nature than that in Fig. 11.10(b). Fig- 
ure 11.10(1) also has a much more scattered phase portrait than that in Fig. 11.10(c). 
Therefore, the message encoding process in the ACM scheme increases the complex- 
ity of the dynamics of the transmitter laser in the chaotic optical communication 
system. 

11.4.3 Effect on Chaos Synchronization 

For the chaotic optical communication system shown in Fig. 11.9, the receiver laser 
is identical to the transmitter laser, and the driving force to the transmitter and that 
to the receiver are the same when there is no encoded message. Therefore, under 
this condition, the receiver can synchronize with the transmitter. 

For chaotic communications, it is important to investigate the effect of mes- 
sage encoding and decoding on chaos synchronization. The issue of maintaining 
synchronization quality in the presence of message encoding is already addressed 
in Chapter 7. The synchronization quality can be maintained or its deterioration 
minimized if the symmetry between the transmitter and the receiver is not broken 
by the message encoding process. In both the CSK and CMS schemes, the symme- 
try between the transmitter and the receiver is broken by the process of message 
encoding. In the ACM scheme, however, the symmetry between the transmitter and 
the receiver is maintained because the message is injected into the dynamics of the 
transmitter when it is sent to the receiver. 

The gradual change of the synchronization quality in the presence of message 
encoding is investigated with the increase in the message strength for the three en- 
coding and decoding schemes. The synchronization quality is quantified by the cal- 
culation of the correlation coefficient p [29] between the outputs of the transmitter 
and the receiver. The correlation coefficient, which is defined in (6.128) of Chapter 6 
and in (7.58) of Chapter 7, is bounded as -1 < p < 1. A larger value of \p\ means a 
higher synchronization quality. In Fig. 11.11, the correlation coefficient is calculated 
for different message strengths for each of the three encoding and decoding schemes. 
For m = 0.0, there is in fact no encoded message. Due to the shght difference in 
the system configurations and in the operating conditions for CSK, CMS, and ACM 
schemes, the correlation coefficients are slightly different for the three schemes when 
m — 0.0. Nevertheless, this difference is very small and the correlation coefficients 
are above 0.9 for all the three schemes when m = 0.0. For the CSK scheme, as the. 
message strength is gradually increased from m = 0.0 to m = 0.7, the correlation 
coefficient is observed to decrease dramatically from 0.9 to 0.5. For the CMS scheme, 
the correlation coefficient also drops from above 0.9 to below 0.8 when the message 
strength is increased from m = 0.0 to m = 0.7. The best synchronization quality is 
achieved with the ACM scheme when there is an encoded message. Even at m = 0.7, 
the correlation coefficient is still as high as 0.84 for the ACM scheme. The slight 
decrease of the synchronization quality in the ACM scheme with the increase in m 
is mainly caused by the significant increase in the complexity of the chaotic state as 
is discussed in the preceeding subsection. Therefore, the effects of message encoding 
on chaos synchronization are very different among the three schemes. 
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Fig. 11.11. Experimentally measured correlation coefficient between the transmit- 
ter and the receiver in a chaotic optical communication system using semiconduc- 
tor lasers with optoelectronic feedback for three encoding schemes, under various 
strengths of the message. 

11.4.4 Performances of Chaotic Communications 

In the preceeding subsections, the different effects of message encoding and decoding 
on chaotic dynamics and chaos synchronization are discussed for the three schemes 
of CSK, CMS, and ACM. Because of such differences, the chaotic communication 
performances are also different among the three schemes. 

In the CSK scheme, the bias current of the transmitter laser is modulated by the 
digital message while that of the receiver laser is not modulated. Therefore, the two 
lasers can synchronize when a "0" bit is transmitted, and they are desynchronized 
when a "1" bit is transmitted. By measuring the synchronization errors, the message 
can be recovered. Figure 11.12(a) shows the measured synchronization errors repre- 
senting the recorded message when the message as shown in Fig. 11.12(d) is trans- 
mitted through the CSK scheme. The dashed line shows the estimated threshold 
between the "0" bits and the "1" bits. Comparing Figs. 11.12(a) and (d), we see that 
a few bits can be recovered, but there are still many bits that cannot be recovered. 

In the CMS scheme, the message is added on the chaotic waveform and is sent to 
the receiver. The receiver synchronizes to the transmitter and reproduces the chaotic 
waveform. By subtraction, the message can be recovered. However, the message is 
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Fig. 11.12. Recovered message in (a) the CSK scheme, (b) the CMS scheme, (c) 
the ACM scheme, and (d) the reference input message in a chaotic optical com- 
munication system using semiconductor lasers with optoelectronic feedback. The 
dashed lines indicate the estimated threshold between "0" and "1". The normalized 
strength of the input message is m = 0.7. 

contaminated by the synchronization errors caused by the asymmetry between the 
transmitter and the receiver in the presence of the encoded message. Because these 
synchronization errors are significant, the communication performance of the CMS 
scheme is also poor. Figure 11.12(b) shows the recovered message through the CMS 
scheme. Comparing Fig. 11.12(b) with the reference message in Fig. 11.12(d), we 
see that the residual synchronization errors are still large, and some bits can be 
recovered while others cannot. 

In the ACM scheme, the synchronization quality is basically maintained even in 
the presence of an encoded message. As the communication quality depends sensi- 
tively on the synchronization quality, the communication performance is expected to 
be high with this high synchronization quality. Figiu-e 11.12(c) shows the recovered 
message using the ACM scheme. It can be seen that all bits are reUably recovered. 
Because synchronization in the system is maintained all the time, the highest bit 
rate that can be transmitted with ACM is not Umited by the resynchronization time 
of the system. 

To further compare the communication performances of the three different 
schemes, the BER is measured for each of the three schemes. In this measurement, 
12,000 bits are recorded and counted for each case. Figure 11.13 shows the BER mea- 
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Fig. 11.13. Measured BER of a chaotic optical communication system using semi- 
conductor lasers with optoelectronic feedback for the three chaotic message encoding 
schemes. The BER of the system without chaos is also indicated by the open circle. 
The normalized strength of the input message is m = 0.7. 

sured at the message strength of m = 0.7 for each of the three encoding schemes. 
The BER is worse than 1 x 10"^ for both the CSK and the CMS schemes. The ACM 
scheme has the best BER, which is between 1 x 10"^ and 1 x 10~^. For comparison, 
the BER of a traditional optical communication system with the same semiconductor 
laser under direct current modulation and direct detection using the same experi- 
mental setup is also shown in Fig. 11.13 as the open circle. It is seen that even when 
there is no chaos in the system, the BER is already worse than 1 x 10~*. This large 
BER is mainly caused by the Umited modulation bandwidth of the semiconductor 
laser and the large noise of the electronic system used in this experimental setup, 
which are not intentionally optimized for high-speed, low-BER communication ap- 
plications. Furthermore, with the semiconductor lasers operating in the broadband 
chaotic state, the chaotic optical communication system has a higher demand on 
the bandwidth of the system, including the electronic components and the detection 
equipment. Therefore, with high-speed electronics, the performance of the chaotic 
optical communication system can be much improved. The system performance can 
be further improved with better matched and less noisy semiconductor lasers and 
other components in the system. 
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11.4.5 Summary 

Chaotic optical communication at 2.5 Gb/s is experimentally investigated and 
demonstrated using the three major chaotic encoding and decoding schemes, namely 
CSK, CMS, and ACM. The effects of message encoding and decoding on chaotic 
dynamics, chaos synchronization, and chaotic communication performances are in- 
vestigated and compared among the three schemes. 

The chaotic dynamics of the system is influenced when the message is injected 
into the dynamics through the process of message encoding. This is the case in the 
CSK and ACM schemes. It is found that a small amount of message injected into 
the chaotic dynamics can increase the complexity of the chaotic state significantly 
because of the random nature of the message. This feature increases the practicality 
of secure communications using chaotic systems because such systems of increased 
complexity are difficult for eavesdroppers to attack. However, not every chaotic en- 
coding scheme has this feature. In the case of CMS, the chaotic dynamics is found 
not to be influenced by the encoded message, which is clear because the message is 
not injected into the chaotic dynamics. 

The quality of chaos synchronization deteriorates when the process of message 
encoding and decoding breaks the symmetry between the transmitter and the re- 
ceiver. In the cases of CSK and CMS, the synchronization quality is found to drop 
dramatically with the increase in the message strength because of this reason. For 
chaotic communications that rely on high-quality chaos synchronization, an encod- 
ing and decoding scheme that can maintain the symmetry between the transmitter 
and the receiver is most desirable. The ACM scheme has this characteristic, and it 
is found to have the best synchronization quality among the three schemes in the 
presence of an encoded message. 

The performances of chaotic communications are directly related to the syn- 
chronization quality. Through comparison, it is found that the ACM scheme has 
the best communication performance among the three schemes, which is in agree- 
ment with the fact that it also has the best synchronization quality among the three 
schemes. The system performance is currently Umited by multiple conditions, such 
as the speed of the electronic devices and the equipment, parameter mismatch be- 
tween the transmitter and the receiver, and noise in the system, etc. Nevertheless, 
the performances of the three most popular chaotic message encoding and decoding 
schemes are clearly demonstrated and compared. 

11.5 Chaotic Optical Communications at 10 Gb/s 

Motivated by the consideration of developing chaotic communication systems at bit 
rates higher than 2.5 Gb/s [8], we choose the OC-192 standard bit rate of 10 Gb/s 
for the system performance studies through simulation [20]. We study several basic, 
yet important, issues regarding high-bit-rate chaotic optical communications based 
on the synchronization of semiconductor laser chaos. The emphasis is on the sys- 
tem performance measured by the BER in the presence of channel noise and laser 
noise. Three chaotic optical communication systems using semiconductor lasers with 
optical injection, optical feedback, or optoelectronic feedback, respectively, are inves- 
tigated in the simulation. For each system, the three encoding and decoding schemes, 
namely CMS, CSK, and ACM axe implemented and compared. The details of the 
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modeling and the characteristics of the nonhnear dynamics of each system are ad- 
dressed in Chapters 8.6 and 9.6. In this chapter, we focus on the communication 
performances and the BER calculations. 

In a chaotic communication system, the synchronization errors of a system are 
contributed by the following two forms of errors: synchronization deviation, which 
is associated with the accuracy of synchronization, and desynchronization burst, 
which is associated with the robustness of synchronization. The synchronization de- 
viation is simply the synchronization error when the system is synchronized, but 
not perfectly and precisely. Desynchronization bursts are characterized by sudden 
desynchronization between the transmitter and the receiver.^ A desynchroniza,tion 
burst can cause a large, abrupt difference between the waveforms of the transmitter 
and the receiver. Because a system takes some finite time to resynchronize after a 
desynchronization burst, the bits that follow a desynchronization burst within the 
resynchronization time are destroyed. In the following subsections, we will see how 
synchronization deviation and synchronization bursts have different effects on the 

system performance. 

11.5.1 Performance of Optical Injection System 

ACM 
mm m(l) m(t) 

m(0 

(a) Optical Injection System 
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Fig. 11.14. Schematics of the chaotic optical communication system using semicon- 
ductor lasers with (a) optical injection, (b) optical feedback, and (c) optoelectronic 
feedback. CMS: chaos masking; CSK: chaos shift keying; ACM: additive chaos mod- 
ulation. TLD: transmitter laser diode; RLD: receiver laser diode; PD: photodetector. 
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According to the configuration in Fig. 11.14(a), the transmitter can be modeled 
by the following coupled equations in terms of the complex intracavity laser field 
amplitude X^ and the carrier density iV"^ [11, 21]: 

^ = _ (^^ + ^«j A^ + ^(,.0 - ^c)^'^ + ^(1 - ih')lA^ + Fl 

+ v{ocA^{t) + Ae-*"'[1 + mACM(i)]}, (11-2) 

^ ^ A^ + rncsKJt)] _    j^T _ 2eon^  ,^T|2^ (^s) 
dt ed ° f^o 

whereas the receiver, driven by the transmitted signal s{t), can be described by 

^ = _^ylR + i(^o_a;,)^i^ + £(l_i6^)7^^ + F,^+7,5(i),     (11.4) 
dt 2 ^ 

^ = 4_^,Ar^_2£0!^^|^Y. (11.5) 
dt        ed rujo 

In this model, ylie"'"* is the optical injection field with a detuning frequency of 
n = 27r/, T] is the injection rate of the optical field into the laser, and a defines the 
coupling strength between the transmitter and the receiver. The transmitted signal 
has the form s{t) = aA'^{t) + ^e-*"*[l +m(i)] for both ACM and CMS schemes, 
but the form s{t) = aA'^{t) + ^le"*"' for the CSK scheme. The subscript of the en- 
coding message m{t) indicates the encoding scheme used. When a particular scheme 
is used, m{t) with a subscript of the other schemes should be set to zero. As can 
be seen from the mathematical model, when CMS is applied, the encoding message, 
m{t), is injected into the receiver but not into the transmitter. When CSK is ap- 
plied, only the transmitter laser, but not the receiver laser, is current modulated 
with the encoding message. By comparison of the rate equations above for different 
encoding schemes, it can be clearly seen that the transmitter and the receiver are 
never mathematically identical when a message is encoded through the CMS or CSK 
scheme. They can be identical only when a message is encoded through the ACM 
scheme and when their parameters are properly matched. 

As a general characteristic of chaotic communications based on synchronization, 
the recovered message is contaminated by the channel noise and the synchronization 
errors. Therefore, the performance of the message recovery is critically determined 
by the synchronization quality, which depends on the noise in the system and the 
encryption method used. The performance of this system is first investigated by 
examining the recovered message in the time domain for each encryption method, 
shown in Fig. 11.15, to provide an understanding of the generation of the error 
bits. In order to reveal the effect of the channel noise on the message recovery, 
the data shown in this figure are obtained when the laser noise is not considered. 
It is observed that message recovery is almost impossible for the CSK scheme be- 
cause message encoding with CSK causes fi-equent desynchronization bursts and the 
success of message decoding for this encryption scheme is determined by the resyn- 
chronization time. At a bit rate of 10 Gb/s, resynchronization is difficult to achieve 
within the short time of the bit duration of Tb = 0.1 ns. The performance can be 
improved at a low bit rate when the bit duration gets longer than the resynchroniza- 
tion time. As for CMS, the synchronization errors mainly arises from the breaking 
of the mathematical identity between the transmitter and the receiver by the en- 
coded message. Since the encoding message used here is small in comparison to the 
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Fig. 11.15. Time series of the decoded messages of the three different encryption 
schemes in the optical injection system. CSK, chaos shift keying; CMS, chaos mask- 
ing; ACM, additive chaos modulation [20]. 

transmitter output, the encoded message acts only as a perturbation on the synchro- 
nization. Therefore, the recovered message shows some resemblance to the pattern of 
the encoding message. Better message recovery can be expected if a low-pass filter is 
used. The performance of ACM is the best among the three encryption methods be- 
cause message encoding by ACM does not break the mathematical identity between 
the transmitter and the receiver. The error bits are contributed by synchronization 
errors caused by the channel noise, as well as by the laser noise when it is consid- 
ered. Whether synchronization deviation or desynchronization bursts dominate in 
the generation of error bits depends on the amount of noise present. We can see that 
the single error bit seen in the ACM decoded message in Fig. 11.15 is generated by 
the occurrence of a desynchronization burst. 

The system performance measured by the BER as a function of channel SNR for 
the optical injection system is shown in Fig. 11.16 for each of the three encryption 
schemes. We observe that CSK and CMS have similar performance when the laser 
noise is not considered. The performance of CMS is barely affected by the laser noise 
because the breaking of the mathematical identity between the transmitter and the 
receiver caused by the encoded message has a much more significant effect on cre- 
ating synchronization errors than the perturbation of the laser noise to the system. 
The performance of CSK is, however, deteriorated by the laser noise because the 
noise further increases the desynchronization probability and the resynchronization 
time. As for the performance of the ACM scheme, a BER lower than 10~^ can be 
obtained for a SNR larger than 60 dB under the condition that the laser noise is 
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Fig. 11.16. BER versus SNR for the three different encryption schemes in the opti- 
cal injection system. Solid curves are obtained when the laser noise is absent. Dashed 
curves are obtained at a laser noise level equivalent to Ai/=100 kHz for both the 
transmitter and receiver lasers. Dot-dashed curves are obtained when Ai'=l MHz. 
Dotted curves are obtained when Z\i/=10 MHz. CSK, chaos shift keying; CMS, chaos 
masking; ACM, additive chaos modulation [20]. 

absent. However, in the presence of the laser noise indicated by laser Unewidth, the 
system performance deteriorates quickly as the intrinsic laser noise increases. 

11.5.2 Performance of Optical Feedback System 

According to the configuration in Fig. 11.14(b), the transmitter can be modeled by 
the following coupled equations [12]: 

dt 
■\- 77[a^'^(i -r)+ mACM{t - T)]. 

dN^ ^ J[l + mcsK{t)] _ ^^^T _ 2eon^^|^T|2^ 
dt ed fiijJo 

(11.6) 

(11.7) 

whereas the receiver, driven by the transmitted signal s{t), can be described by 

^ = -IIA^ + i(wo - ujo)A'' -F J(l - ih^'hA^ + Fl -F nsit - T), (11.8) 
dt 2 I 

dN^ 
dt = ^-^=^ hiLio 

--rlA^ (11.9) 
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Here T is the feedback delay time, and 7? is the injection rate. Since the feedback 
strength has to be equal to the coupling strength between the transmitter and the 
receiver for the existence of perfect chaos synchronization, the parameter a is used 
for both quantities. The transmitted signal has the form s{t) = aA'^{t) + m{t) for 
both ACM and CMS schemes and the form s{t) = aA'^{t) for the CSK scheme. 
When CMS is applied, the encoding message m{t) is sent to the receiver but is not 
fed back to the transmitter. When CSK is appUed, only the transmitter laser, but 
not the receiver laser, is current modulated with the encoding message. By com- 
parison of the rate equations above for different encoding schemes, we see that the 
transmitter and the receiver can be mathematically identical in the presence of a 
message only when ACM is apphed and when their parameters are well matched. 
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Fig. 11.17. Time series of the decoded messages of the three different encryption 
schemes in the optical feedback system. CSK, chaos shift keying; CMS, chaos mask- 
ing; ACM, additive chaos modulation [20]. 

The performance of this system for 10 Gb/s communications is also first investi- 
gated by examining the recovered message in the time domain, shown in Fig. 11.17. 
It is observed that message recovery is not possible for the CSK scheme because 
the resynchronization time after a desynchronization burst is much longer than the 
bit duration as is also the situation for the use of CSK in the optical injection sys- 
tem. The performance can be improved at a low bit rate when the bit duration gets 
longer than the resynchronization time. The performance of CMS in this system 
is similar to that of CMS in the optical injection system because any disturbance 
due to CMS encoding that causes synchronization errors only affects the receiver in 
the same manner for both systems. The bit error mainly arises from the mismatch 
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Fig. 11.18. BER versus SNR for the three different encryption schemes in the opti- 
cal feedback system. Solid curves are obtained when the laser noise is absent. Dashed 
curves are obtained at a laser noise level equivalent to Au=100 kHz for both the 
transmitter and receiver lasers. Dot-dashed curves are obtained when Au=l MHz. 
Dotted curves are obtained when /ii/=10 MHz. CSK, chaos shift keying; CMS, chaos 
masking; ACM, additive chaos modulation [20]. 

between the transmitter and the receiver due to message encoding. Because the en- 
coded message is considered as a perturbation to the synchronization, the recovered 
message shows the image of the encoding message. Therefore, better message re- 
covery is expected if a low-pass filter is used. The performance of ACM is the best 
among the three encryption schemes because message encoding by ACM does not 
break the mathematical identity between the transmitter and the receiver. The error 
bits of ACM are caused mainly by desynchronization bursts triggered by both the 
channel noise and the laser noise. In Fig. 11.17, we see that the error bits are almost 
all generated by desynchronization biursts. More error bits than those in the optical 
injection system are observed. 

The system performance measured by the BER as a function of channel SNR 
for the optical feedback system is shown in Fig. 11.18. Prom Fig. 11.18, we find that 
message recovery for the CSK scheme is not possible at the high bit rate studied here 
because the resynchronization time after a desynchronization burst has to be shorter 
than the bit duration for a following bit to be recoverable. The performance of CMS 
in this system is similar to that of CMS in the optical injection system, and it is 
barely affected by the laser noise for the same reason as that mentioned above for the 
optical injection system. As for the performance of the ACM scheme, a BER lower 
than 10"^ cannot be obtained even when the channel SNR is as large as 120 dB. This 
is caused by the frequent occurrence of desynchronization bursts in this system even 
at an extremely low level of channel noise. In the presence of laser noise, the BER is 
always higher than 10~^ at a laser noise level characterized by a Unewidth of Au > 
100 kHz, and the BER saturates at a higher value for a higher level of laser noise. 
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11.5.3 Performance of Optoelectronic Feedback System 

To investigated the system performance with different encoding and decoding 
schemes, the configuration in Fig. 11.14(c) is used for the simulation in this subsec- 
tion. To specify the different encoding and decoding schemes, the transmitter can 
be modeled by the following coupled equations in terms of the photon density S 
and the carrier density A'''^ [21]: 

d^ = _^,5T ^ p^^T ^ 2x/So5^if, (11-10) 
dt 

dt ed I -I 

y'^{t)= f   dvf{t-v)[S'^{v)+mACu{v)]/So, (11-12) 
J —CO 

whereas the receiver, driven by the transmitted signal s{t), can be described by 

^ = -j^s"" + TTS^ + 2^/5^Pf, (11.13) 
dt 

dN^ = lh + ^j/TR(i _ T)] - y.N'' - 75^, (11-14) 
dt ed I J 

y-^^{t)= f   dvf''{t-v)s{v)/So. (11-15) 

The transmitted signal has the form s{t) = S'^{t) + m{t) for both ACM and CMS 
schemes and the form s{t) = S'^it) for the CSK scheme. The subscript of the en- 
coding message m(t) in the equations indicates the encoding scheme used. The 
transmitter and the receiver can be mathematically identical only when a message 
is encoded through the ACM scheme and when their parameters are well matched. 
It is assumed in the simulation that /'^(t) = f^{t) = S{t). 

The performance of this system for 10 Gb/s communications is first investigated 
by examining the recovered message in the time domain, shown in Fig. 11.19. Be- 
cause the resynchronization time after a desynchronization burst has to be shorter 
than the bit duration for a following bit to be recoverable, the recovery of the high- 
bit-rate message in CSK is not possible. As is seen in Fig. 11.19, almost all the 
bits in the recovered message for CSK are destroyed by desynchronization bursts. 
The performance can be improved at a low bit rate when the bit duration gets 
longer than the resynchronization time. For CMS in this system, the breaking of 
the identity between the transmitter and the receiver lasers causes synchronization 
deviation in the form of timing errors in the synchronization of the chaotic pulses. 
For the performance of CMS, the errors in message recovery are primarily generated 
by these timing errors. The recovered message is thus contaminated by frequent 
spikes. Whether the use of a low-pass filter can improve the CMS performance for 
this system is a question for further investigation. The performance of ACM is the 
best among the three encryption schemes. The error bits in the recovered message 
for ACM are caused by synchronization errors in the form of synchronization devi- 
ation due to the channel noise and the laser noise. No desynchronization bursts are 
observed in this system when the ACM encryption scheme is apphed. 

The system performance measured by the BER as a function of channel SNR 
for the optoelectronic feedback system is shown in Fig. 11.20. Prom Fig. 11.20, we 
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Fig. 11.19. Time series of the decoded messages of the three different encryption 
schemes in the optoelectronic feedback system. CSK, chaos shift keying; CMS, chaos 
masking; ACM, additive chaos modulation [20]. 

find that message recovery at this high bit rate is not possible for the CSK and the 
CMS schemes. As for the performance of the ACM scheme, a BER lower than 10~® 
can be obtained when the SNR is larger than 38 dB, which is much better than the 
performances of the CSK and the CMS schemes. A difference between the optoelec- 
tronic feedback system and the optical injection or optical feedback system is that 
the optoelectronic feedback system is not sensitive to optical phase. Consequently, 
the performance of the optoelectronic feedback system is observed to be better than 
those of the optical injection and optical feedback systems. 

11.5.4 Error Reduction with Filter 

The bit errors from different sources behave very differently when a filter is used 
to filter out the noise and the synchronization errors. How much BER can be re- 
duced by the filter depends on which type of error source dominates the system BER 
performance. The system BER performances, shown in Fig. 11.21, under different 
encryption schemes are obtained by choosing SNR = 30 dB and a bit rate equal 
to 10 Gb/s. The BER performances of the three different systems are marked by 
different symbols: circles for the optical injection system, squares for the optical feed- 
back system, and triangles for the optoelectronic feedback system. The solid symbols 
mark the BER after the filter, and the open symbols mark the BER before the filter. 

For the CMS and CSK encryption schemes, most of the bit errors are generated 
by the desynchronization bursts because the encoding of a message through such 
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Fig. 11.20. BER versus SNR for the three different encryption schemes in the 
optoelectronic feedback system. Solid curves are obtained when the laser noise is 
absent. Dashed curves are obtained at a laser noise level equivalent to Au=100 kHz 
for both the transmitter and receiver lasers, Dot-dashed curves are obtained when 
Au=l MHz. Dotted curves are obtained when Au=lO MHz. CSK, chaos shift keying; 
CMS, chaos masking; ACM, additive chaos modulation [20]. 

schemes breaks the mathematical symmetry of the system so that true synchro- 
nization cannot be accomplished. Consequently, the filter has very limited, if any, 
improvement on the BER performance of the CMS and CSK schemes, as is seen in 
Fig. 11.21. For the ACM encryption scheme, true synchronization is possible because 
encoding of a message by ACM does not break the mathematical identity between 
the transmitter and the receiver. In this situation, the effectiveness of filtering on the 
reduction of BER depends on how frequently desynchronization bursts occur and 
how large synchronization deviation is on average in a particular operating condi- 
tion. For the ACM performance of the three systems at 10 Gb/s, we see in Fig. 11.21 
that the filter reduces the BER for both the optical injection and the optoelectronic 
feedback systems, but it hardly reduces the BER for the optical feedback system. 

The effect of the filter on ACM for the three systems over a range of bit rates 
is presented in Fig. 11.22. For the optical feedback system, there is no significant 
improvement in the BER. For the optical injection and the optoelectronic feedback 
systems, the BER is improved over the entire range of bit rates after filtering. For 
the optoelectronic feedback system , the BER after the filter continues to decrease 
as the bit rate is lowered and the bandwidth of the filter is reduced accordingly. 
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11.5.5 Summairy 

The inherent advantage of any optical communication system is its ability to han- 
dle high-bit-rate communications. Chaotic optical communications at the OC-192 
standard bit rate of 10 Gb/s are possible when high-speed semiconductor lasers are 
used. Three semiconductor laser systems, namely the optical injection system, the 
optical feedback system, and the optoelectronic feedback system, that are capable 
of generating broadband, high-frequency chaos for high-bit-rate communications are 
considered. The performance of each system at 10 Gb/s is numerically studied for 
the three encryption schemes of CSK, CMS, and ACM. Channel noise and laser 
noise at the realistic levels of common semiconductor lasers from both the trans- 
mitter and the receiver are considered in the study. It is found that these noise 
sources have very significant effects on the system performance at high bit rates 
primarily because they cause synchronization errors in the forms of synchronization 
deviation and desynchronization bursts in these synchronized chaotic communica- 
tion systems. Among the three encryption schemes, it is found that at high bit rates 
only the performance of ACM with low-noise lasers is acceptable because ACM al- 
lows true synchronization in the process of message encoding by maintaining the 
mathematical identity between the transmitter and the receiver. Both CSK and 
CMS cause significant desynchronization bursts or synchronization deviation in the 
systems because they break the identity between the transmitter and the receiver 
in the process of message encoding. 

Our study results clearly point out that for synchronized high-bit-rate chaotic 
optical communications, it is very important to reduce as much noise as possible 
from all sources so that noise-induced desynchronization bursts and synchronization 
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Fig. 11.21. BER for the optical injection system, marked as circles, the optical 
feedback system, marked as squares, and the optoelectronic feedback system, marked 
as triangles, of the three different encryption schemes. The soUd symbols mark the 
BER after the filter, and the open symbols mark the BER before the filter [20]. 
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Fig. 11.22. BER versus bit rate for the three systems under ACM. The meanings 
of the symbols are the same as those in Fig. 11.21 [20]. 

deviation can be minimized. It is equally important to select a system that is robust 
against noise and an encryption scheme such as ACM that allows the system to re- 
main stably synchronized when messages are encoded. Proper filtering can improve 
the performance by reducing the errors caused by synchronization deviation. 

11.6 Concluding Remarks 

Chaotic optical communication is an emerging field of growing interest. This new 
communication scheme utilizes, instead of avoiding, nonlinear effects in dynamical 
systems so that it has many new features such as noise-hke time series and broadband 
spectrum. Based on these features, chaotic optical communications have potential 
applications in secure communications and spread-spectrum communications. 

In this chapter, the basic concepts of chaotic optical communications are pre- 
sented. In a chaotic optical communication system, a nonlinear dynamical system is 
used to generate the optical chaotic waveform for message transmission. Messages 
are encoded through chaos encryption where the messages are mixed with the chaos. 
Message recovery is achieved by comparing the received signal with a reproduced 
chaotic waveform that synchronizes with the chaotic waveform from the transmit- 
ter. To achieve chaos synchronization, an identical nonlinear dynamical system is 
required on the receiver side, which is coupled to the nonlinear dynamical system 
on the transmitter side. Details of chaos generation, chaos encoding and decoding, 
and chaos synchronization are discussed in this chapter. 
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Furthermore, we also review our achievement on the experiment of chaotic op- 
tical communication at 2.5 Gb/s [8], which has the highest bit rate in any chaotic 
communication systems ever reported in the literature. Three major encoding and 
decoding schemes, namely chaos masking, chaos shift keying, and chaos modulation 
are implemented and compared in this 2.5 Gb/s chaotic optical communication sys- 
tem. The system uses semiconductor lasers with delayed optoelectronic feedback. 
The chaos modulation scheme is found to have the best performance. 

To investigate the potential applications of chaotic optical communications at 
an even higher bit rate, numerical simulations are carried out on chaotic optical 
communication systems operated at 10 Gb/s. In this numerical study, three systems 
using semiconductor lasers with optical injection, optical feedback, or optoelectronic 
feedback are investigated using the three encoding and decoding schemes. It is shown 
that chaotic optical communication at 10 Gb/s is feasible using fast semiconductor 
lasers. The implementation of proper filtering further improves the system perfor- 
mance. 

It is beUeved that nonlinear dynamical systems will bring new features to opti- 
cal communications. However, many practical issues related to chaotic optical com- 
munications still need to be investigated. Such issues include the effect of fiber 
dispersion and nonhnearity in a fiber transmission system, parameter mismatch 
in semiconductor lasers and in other components, the effect of spectrum spread- 
ing with chaotic encryption, and so on. Multiuser applications also need to be 
addressed for chaotic communications. For example, different chaotic waveforms 
can be used as the natural spreading codes for different users. The issues re- 
garding how to decode messages among multiple users are subjects to be inves- 
tigated. 
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50. Z. Tasev, "Nonlinear Dynamics in Turbo Decoding Algorithms" to be published in the Proceedmgs 
of the lASTED International Conference on Communication, Internet and Information Technology, 
Special Session on Nonlinear Dynamics and Chaos in Communication Systems and Networks. 



2   SCIENTIFIC PERSONNEL 

1. Abarbanel, Henry D. L, Professor, Institute of Nonlinear Science, University of 
California, San Diego 

2. Buhl,  Michael,  Graduate  Student Researcher,  Institute  for Nonlinear  Science, 
University of CaUfomia, San Diego 

3. Chen,   C.-C,   Graduate   Student  Research   Scientist,   Department  of Electrical 
Engineering, University of Cahfomia, Los Angeles 

4. Chen, How-foo, Graduate Student Research Scientist, Department of Electrical 
Engineering, University of CaUfomia, Los Angeles 

5. Chiang, Patrick, Graduate Student, Electrical Engineering and Computer Science, 
Stanford University 

6. Dally, WiUiam J., Professor, Electrical Engineering and Computer Science, Stanford 
University 

7. Fairbanks,   John   S.,   Graduate   Student   Researcher,   Electrical   and   Computer 
Engineering, University of California, San Diego 

8. Fishov, Assaf, Graduate Student, Electrical and Computer Engineering, University of 
California, San Diego 

9. Galias, Zbigniew, Visiting Assistant Professor, Institute for Nonlinear Science, 
University of Cahfomia, San Diego 

10. Hwang, Sheng-Kwang, Graduate Student Researcher, Department of Electrical 
Engineering, University of CaUfomia, Los Angeles 

ll.ming, Lucas, Graduate Student Researcher, Physics, University of California, San 
Diego 

12. ImpagUazzo, RusseU, Professor, Computer Science and Engineering, University of 
CaUfomia, San Diego 

13. Kennel, Matthew, Assistant Research Scientist, Institute for Nonlinear Science, 
University of California, San Diego 

14. Kocarev, Ljupco, Associate Research Scientist, Institute for Nonlinear Science, 
University of CaUfomia, San Diego 

15. Laney, David, Graduate Student, Electrical and Computer Engineering, University of 
California, San Diego 



, 16. Larson, Lawrence, Professor, Electrical and Computer Engineering, University of 
California, San Diego 

17. Lewis, Clifford, Graduate Student Researcher, Physics, University of Cahfomia, San 
Diego 

18. Liu, Jia-ming, Professor, Department of Electrical Engineering, University of 
Cahfomia, Los Angeles 

19. Maggio,  Gian Mario, Visiting Scholar, Electrical and Computer Engineering, 
University of Cahfomia, San Diego 

20. Rulkov, Nikolai, Associate Research Scientist, Institute of Nonlinear Science, 
University of Cahfomia, San Diego 

21. Schell, Chad, Graduate Student Researcher, Electrical and Computer Engineering, 
University of Cahfomia, San Diego 

22. Tang, Shuo, Graduate Student Researcher, Department of Electrical Engineering, 
University of Cahfomia, Los Angeles 

23. Tsimring, Lev, Research Scientist, Listitute of Nonlinear Science, University of 
Cahfomia, San Diego 

24. Volkovskii, Alexander, Assistant Project Scientist, histitute of Nonhnear Science, 
University of Cahfomia, San Diego 

25.Yao,   Kung,   Professor,   Department   of Electrical   Engineering,   University  of 
California, Los Angeles 

26. Zhang, Xuejun, Graduate Student Researcher, ECE, University of California, San 
Diego 



3    Report of inventions 

To date, the following patents have been submitted to the University patent offices 

1. M.Sushchik, N.Rulkov, L.Larson, L. Tsimring, H.Abarbanel, and A.Volkovskii. Chaotic tnpulse Radio 
(Submitted) 

2. G.M. Maggio and L. Reggiani, Innovative coding/modulation scheme exploiting the symbolic dynamics 
of a chaotic map (Submitted) 

3. K. Yao and C.C. Chen. Design and Implementation of Optimal DS-CDMA-SS Codes, March 16, 2000 
UC Case 2000-382. 
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Chaos Conference Proceeding (2002). 
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Communications (2003). 
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Optical Conmiunications," submitted to IEEE J. Quantum Electron. (2003). 

14. S. Tang and J.M. Liu, "Experimental Verification of Anticipated and Retarded 
Synchronization in Chaotic Semiconductor Lasers," submitted to Physical Review Letters 
(2003). 

15. S.K. Hwang, J.M. Liu, and K. White, "35-GHz Intrinsic Bandwidth for Direct Modulation in 
1.3-|im Semiconductor Lasers subject to Strong hijection Locking," to be submitted to Photonics 
Technology Letters (2003) 

16. H.F. Chen and J.M. Liu, "Complete Chaos Synchronization in Semiconductor Lasers subject 
to Optical Injection," to be submitted to Physical Review Letters (2003). 

17. J.S. Fairbanks and L.E. Larson, "Analysis of Optimized Liput and Output Harmonic 
Termination on the Linearity of 5 GHz CMOS Radio Frequency AmpUfers," submitted to IEEE 
MTTS Radio andWireless Conference, 2003. 

18. J.S. Fairbanks and L.E. Larson, "Analysis of Termination Impedance Effects on the Linearity 
of 5 GHz Radio Frequency Amphfers," Si RF Workshop, IEEE Microwave Theory and 
Techniques, Germany, April 2003. 

19. N.F. Rulkov and V.S. Afraimovich, " Detectability of non-differentiable generalized 
synchrony," (Electronic NonLinear Science Preprint, nlin.CD/0303022), submitted to PRE. 

20. N.F. Rulkov, M.A. Vorontsov and L. lUing, "Chaotic Free-Space Laser Communication over 
Turbulent Channel," Phys. Rev. Lett. 89, (2002) 277905 
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1. J.B. Gao, S.K. Hwang, H.F. Chen, Z. Kang, K. Yao, and J.M. Liu, "Can Sea Clutter 
and Indoor Radio Propagation be Modeled as Strong Attractors," 7th Experimental 
Chaos Conference, San Diego, California, August 25-29, 2002. 

2. H.F. Chen and J.M. Liu, "Chaotic Synchronization on Optical Phases in Bandwidthbroadened 
Semiconductor Lasers subject to Optical Injection," 7th Experimental 
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